Download presentation
Presentation is loading. Please wait.
Published byRosalind Goodwin Modified over 6 years ago
1
Image compression on reconfigurable FPGA for the SO/PHI space instrument
D. Hernández Expósito, J.P. Cobos Carrascosa, J.L. Ramos Mas, M. Rodríguez Valido, D. Orozco Suárez, J.C. del Toro Iniesta SpacE FPGA Users Workshop, 4th Edition 9-11 April 2018 European Space Research and Technology Centre (ESTEC) 1
2
Table of contents Solar Orbiter / Polarimetric Helioseismic Imager (SO/PHI) Introduction Compression requirements Digital Processing Unit FPGA Image Compression Core for SO/PHI CCSDS-IDC Introduction Discrete Wavelet Transform (DWT) Bit plane Encoder (BPE) Results and conclusions
3
SO/PHI: Introduction Solar Orbiter / Polarimetric Helioseismic imager (SO/PHI) Perihelium: 0.28 AU SO/PHI: magnetograph Insufficient telemetry 20Kb/s downlink!
4
SO/PHI: Compression requirements
24 raw images (2K x 2K pixels) 5 science images On board data pipeline: compression factor 33.4 ! Detector Pre-processing RTE Inversion Compression To Ground 3Gbit 3Gbit 320Mbit 92Mbit Compression requirements: Losless/lossy compression Images of different sizes (up to 2K x 2K pixels) Dynamic range 16 bpp
5
SO/PHI: Digital Processing Unit
Xilinx FPGA#1 (Virtex-4 SX55) Compression Fiethe, B.; Bubenhagen, et al., "Adaptive hardware by dynamic reconfiguration for the Solar Orbiter PHI instrument," NASA/ESA Conference on Adaptive Hardware and Systems (AHS), 2012
6
Table of contents Solar Orbiter / Polarimetric Helioseismic Imager (SO/PHI) Introduction Compression requirements Digital Processing Unit FPGA Image Compression Core for SO/PHI CCSDS-IDC Introduction Discrete Wavelet Transform (DWT) Bit plane Encoder (BPE) Results and conclusions
7
FPGA Image Compression Core for SO/PHI
Consultative Committee for Space Data Systems – Image Data Compression (CCSDS-IDC 122,0-B-1) Compression mode: Lossless and lossy Grayscale images up to 16 bits per pixel (revision B-1) Aimed to spacecraft applications Good trade-off compression performance vs complexity Hardware implementation Input image Discrete Wavelet Transform (DWT) Bit Plane Encoder (BPE) Compressed Data
8
FPGA Image Compression Core for SO/PHI
Architecture overview SoCWire DPU network
9
FPGA Image Compression Core for SO/PHI
3-level 2-Dimensional Discrete Wavelet Transform 1D - 9/7 DWT : 9/7 Integer DWT Only integer operations Complexity ↓ Lossless and lossy 9/7 Float DWT Float operations Complexity ↑ lossy Compression effectiveness at low bit rates ↑ 2D-DWT DC's coefficients 2D-DWT 2D-DWT AC's coefficients Level 1 Level 2 Level 3 3-Level 2D-DWT
10
FPGA Image Compression Core for SO/PHI
DWT Simple Intruction Multiple Data (SIMD) – Mutltiprocessor Net Parameterized ALU: 32 bits Float Point +, *, CCSDS-round, Float point to integer conversión 24 bits Fixed Point ALU +, *, CCSDS-round Integer/Float DWT compliant Smart Buffer net: Inspired in CCSDS memory efficient DWT calculation. Row to column transposition BRAM line buffers Same processor used in the RTE Inversor reduce the time for development
11
FPGA Image Compression Core for SO/PHI
Bit Plane Encoding process Segment: group of S consecutive blocks Block: spacial region of the image (1 DC + 63 AC’s) Segment Dynamic Range parameters: BitDepthDC, BitDepthAC and BitDepthAC_block_m Segment size (S blocks per segment) implications: S ↓ protection against errors ↑ S ↑ Compression effectiveness ↑ S ↑ Memory resources ↑ BitdepthAC_block_m Segment Header DC's coefficients [DPCM + RICE] Initial coding of DC coeffcients Coded AC bit depths Coded bit plane BitDepthAC-1 Coded bit plane BitDepthAC-2 [Bitplane + VLC] Coded bit plane b AC's coefficients DWT image partitioned into segments First segment coding Coded bit plane 0
12
CCSDS-IDC: FPGA implementation
Bit Plane Encoder architecture Calculates every dynamic range parameters online: BPE starts whenever a segment is generated. The same block to DC’s and BitdepthAC_m encoding: Minimum resource usage AC CODER It holds two segments: A segment is encoded meanwhile the next one is being generated. Up to 256 block/segment. Fabric BRAMs in Dual-Port RAM configuration.
13
Table of contents Solar Orbiter / Polarimetric Helioseismic Imager (SO/PHI) Introduction Compression requirements Digital Processing Unit FPGA Image Compression Core for SO/PHI CCSDS-IDC Introduction Discrete Wavelet Transform (DWT) Bit plane Encoder (BPE) Results and conclusions
14
Results Architecture configurability VHDL parameters
User configurable parameters Allowed values Discrete Wavelet Transform 9/7 Integer DWT, 9/7 Float DWT CustomWtFlag 0, 1 CustomWt 0, 1, 2, 3 ImageWidth (pixels) [128:64:2048] ImageHeight (pixels) [64:64:2048] S (blocks/segment) 32 >= S <= 256, power of 2 SegmByteLimit (bytes) [0 - 2^17] BitplaneStop [0 – 32] StageStop VHDL parameters Soft-Register configurable
15
Results FPGA Image Compression Core for SO/PHI – Flight Model
XC4VSX55 FPGA implementation statistics: Image size: up to 2048x2048 Dynamic range: 16 bits/pixel 9/7 Integer DWT (lossless and lossy) Segment size: up to S = 256 blocks Occupied Slices 12,000 (50%) Occupied BRAM 168 (60%) Occupied DSP48E 62 (12%) Maximun Frecuency 150 MHz Maximum Throughput 30 MHz 2 seconds/image
16
Conclusions System On Chip solution Not external memory
Very low resource occupancy Virtex-4 SX55 High S (blocks per segment) values Versatility: Integer & Float DWT Different image sizes Lossless/lossy Good performance >30 times faster than software implementations (LEON3) First CCSDS-IDC Coder on a reconfigurable FPGA for an ESA mission (SO/PHI FM)
17
<< dhdez@iaa.es >>
Image compression on reconfigurable FPGA for the SO/PHI space instrument D. Hernández Expósito, J.P. Cobos Carrascosa, J.L. Ramos Mas, M. Rodríguez Valido, D. Orozco Suárez, J.C. del Toro Iniesta << >> 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.