Download presentation
Presentation is loading. Please wait.
1
Angles and Parallel Lines
Lesson 2-4 Angles and Parallel Lines Lesson 2-4: Angles and Parallel Lines
2
Lesson 2-4: Angles and Parallel Lines
Transversal Definition: A line that intersects two or more lines in a plane at different points is called a transversal. When a transversal t intersects line n and m, eight angles of the following types are formed: Exterior angles Interior angles Same side interior angles Alternative exterior angles Alternative interior angles Corresponding angles t m n Lesson 2-4: Angles and Parallel Lines
3
Vertical Angles & Linear Pair
Two angles that are opposite angles. Vertical angles are congruent. 1 4, 2 3, 5 8, 6 7 Supplementary angles that form a line (sum = 180) 1 & 2 , 2 & 4 , 4 &3, 3 & 1, 5 & 6, 6 & 8, 8 & 7, 7 & 5 1 2 3 4 5 6 7 8 Lesson 2-4: Angles and Parallel Lines
4
Angles and Parallel Lines
If two parallel lines are cut by a transversal, then the following pairs of angles are congruent. Corresponding angles Alternate interior angles Alternate exterior angles Vertical angles If two parallel lines are cut by a transversal, then the following pairs of angles are supplementary. Same side interior angles Same side exterior angles Adjacent angles Continued….. Lesson 2-4: Angles and Parallel Lines
5
Corresponding Angles & Consecutive Angles
Corresponding Angles: Two angles that occupy corresponding positions. 2 6, 1 5, 3 7, 4 8 1 2 3 4 5 6 7 8 Lesson 2-4: Angles and Parallel Lines
6
Lesson 2-4: Angles and Parallel Lines
Same Side Angles Same Side Interior Angles: Two angles that lie between parallel lines on the same sides of the transversal. Same Side Exterior Angles: Two angles that lie outside parallel lines on the same sides of the transversal. m3 +m5 = 180º, m4 +m6 = 180º 1 2 m1 +m7 = 180º, m2 +m8 = 180º 3 4 5 6 7 8 Lesson 2-4: Angles and Parallel Lines
7
Lesson 2-4: Angles and Parallel Lines
Alternate Angles Alternate Interior Angles: Two angles that lie between parallel lines on opposite sides of the transversal (but not a linear pair). Alternate Exterior Angles: Two angles that lie outside parallel lines on opposite sides of the transversal. 3 6, 4 5 2 7, 1 8 1 2 3 4 5 6 7 8 Lesson 2-4: Angles and Parallel Lines
8
Lesson 2-4: Angles and Parallel Lines
Example: If line AB is parallel to line CD and s is parallel to t, find the measure of all the angles when m< 1 = 100°. Justify your answers. t 16 15 14 13 12 11 10 9 8 7 6 5 3 4 2 1 s D C B A m<2=80° m<3=100° m<4=80° m<5=100° m<6=80° m<7=100° m<8=80° m<9=100° m<10=80° m<11=100° m<12=80° m<13=100° m<14=80° m<15=100° m<16=80° Lesson 2-4: Angles and Parallel Lines
9
Lesson 2-4: Angles and Parallel Lines
If line AB is parallel to line CD and s is parallel to t, find: Example: 1. the value of x, if m<3 = 4x + 6 and the m<11 = 126. 2. the value of x, if m<1 = 100 and m<8 = 2x + 10. 3. the value of y, if m<11 = 3y – 5 and m<16 = 2y + 20. t 16 15 14 13 12 11 10 9 8 7 6 5 3 4 2 1 s D C B A ANSWERS: 1. 30 2. 35 3. 33 Lesson 2-4: Angles and Parallel Lines
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.