Presentation is loading. Please wait.

Presentation is loading. Please wait.

A message-based cocktail watermarking system

Similar presentations


Presentation on theme: "A message-based cocktail watermarking system"— Presentation transcript:

1 A message-based cocktail watermarking system
Source: Pattern Recognition Vol. 36, 2003, pp Authors: Gwo-Jong Yuam, Chun-Shien Lub, Hong-Yuan Mark Liaob Speaker: Yeh Jun-Bin Date:

2 Outline Wavelet Code generation Cocktail Watermark Inexact matching
Experimental results Conclusions

3 Flowchart of proposed method

4 Wavelet 1” Wavelet LL2 HL2 LH2 HH2 2” Wavelet LL1 HL1 LH1 HH1

5 Wavelet(cont.) Phase 1) Horizontal: Phase 2) Vertical: A B C D E F G H
J K L M N O P A+B C+D A-B C-D E+F G+H E-F G-H I+J K+L I-J K-L M+N O+P M-N O-P Phase 2) Vertical: ㄅ+ㄉ ㄆ+ㄊ ㄇ+ㄋ ㄈ+ㄌ ㄍ+ㄑ ㄎ+ㄒ ㄏ+ㄓ ㄐ+ㄔ ㄅ-ㄉ ㄆ-ㄊ ㄇ-ㄋ ㄈ-ㄌ ㄍ-ㄑ ㄎ-ㄒ ㄏ-ㄓ ㄐ-ㄔ

6 Wavelet(cont.) Phase 1) Horizontal : Example Phase 2) Vertical :
20 15 30 17 16 31 22 18 25 21 19 35 50 5 10 33 53 1 9 42 -3 -8 43 37 -1 35 50 5 10 33 53 1 9 42 -3 -8 43 37 -1 Phase 2) Vertical : 35 50 5 10 33 53 1 9 42 -3 -8 43 37 -1 68 103 6 19 76 79 -4 -7 2 -3 4 1 -10 5 -2 -9 326 -38 6 19 16 -32 2 -7 -3 4 1 -10 5 -2 -9 (Level one is done) (Level two is done)

7 Flowchart of proposed method

8 Code generation Hadamard code guarantee the maximal hamming distance
Map ASCII code to Hadamard code Code generate: H1 = (1) H2n = Where –Hn is complement of Hn Ex: H2 = , H4 =

9 Code generation (cont.)
A: B: C: D: E: F: G: H:

10 Flowchart of proposed method

11 Attack types 320 240 DWT 80 20 10 40 15 sharp compress

12 Cocktail Watermark - Encode
Note: PM and NM are the form of these formula, but not equal. For more detail, please read the original paper. Original image 326+1*1=327 -38+1*1= -37 326 -38 6 19 16 -32 2 -7 -3 4 1 -10 5 -2 -9 Gaussian Distribution P N 1 2 -1 3 -2 -3 4 -4 5 -5 6 -6 7 -7 -8 8 Positive watermark Negative watermark mapping 327 -37 Watermarked image

13 Cocktail Watermark – Encode(Cont.)
Original image Note: PM and NM are the form of these formula, but not equal. For more detail, please read the original paper. 326 -38 6 19 16 -32 2 -7 -3 4 1 -10 5 -2 -9 6 - 1*1=5 19+(-1)*1=18 Gaussian Distribution P N 1 2 -1 3 -2 -3 4 -4 5 -5 6 -6 7 -7 -8 8 Positive watermark Negative watermark mapping 327 -37 5 18 15 -31 1 -6 3 -4 -11 6 -1 -10 Watermarked image

14 Cocktail Watermark – Decode
Attacked image Original image B( ) = 0 B(-37-(-38)) = 1 B(6-3) = 1 B(18-19) = 0 326 -38 6 19 16 -32 2 -7 -3 4 1 -10 5 -2 -9 325 -37 3 18 15 -31 1 -6 -4 5 -11 6 -1 -10 Positive watermark 1 Negative watermark 1 2 -1 3 -2 -3 4 -4 5 -5 6 -6 7 -7 -8 8 1 We (x,y) = B(Wa (x,y) – Wo (x,y)) for positive We (x,y) = B(Wo (x,y) - Wa (x,y)) for negative B(z) = 1 if z >= if z < 0 mapping

15 Flowchart of proposed method

16 Inexact matching Inexact matching is used to recover the codeword and map the codeword to ASCII code Back Propagation Neural Network(BPNN) algorithm is used in Inexact matching stage

17 Inexact matching(Cont.)
(Input, output) (右手,跑) (左手,站起來) 當我伸右手,就跑,伸左手就站起來!

18 Inexact matching(Cont.)

19 Inexact matching(Cont.)
Step 1: Training Fed Hadamard code as input, ASCII code index as output train the weights between input and hidden, hidden and output. All Hadamard codes All ASCII codes index Neural network

20 Inexact matching(Cont.)
2 training sample: (11, 10), (10, 01) Step 1 example: 1 3 4 2 5 X1=1 w13 w24 w23 w14 O5=1 6 w35 w46 w45 w36 X2=1 O6=0

21 Inexact matching(Cont.)
Step 2: Inexact matching Fed output of Cocktail as input (one codeword at a time) use the weights trained at step1 The output is ASCII code index A: B: C: D: E: F: G: H: Neural network

22 Experimental results

23 Conclusions Hadamard code and cocktail watermark make message type watermark more reliable


Download ppt "A message-based cocktail watermarking system"

Similar presentations


Ads by Google