Download presentation
Presentation is loading. Please wait.
1
What can we know from RREF?
Hung-yi Lee Proof that RREF is unique
2
Reference Textbook: Chapter 1.6, 1.7
3
Outline RREF v.s. Linear Combination RREF v.s. Independent
RREF v.s. Rank RREF v.s. Span
4
RREF v.s. Linear Combination
5
Column Correspondence Theorem
RREF ๐ด= ๐ ๐ โฏ ๐ ๐ ๐
= ๐ ๐ โฏ ๐ ๐ If ๐ ๐ is a linear combination of other columns of A ๐ ๐ is a linear combination of the corresponding columns of R with the same coefficients a5 = ๏ญa1+a4 r5 = ๏ญr1+r4 ๐ ๐ is a linear combination of the corresponding columns of A with the same coefficients If ๐ ๐ is a linear combination of other columns of R a3 = 3a1-2a2 r3 = 3r1-2r2
6
Column Correspondence Theorem - Example
P118 โ 122 (Chapter 2.3) a2 = 2a1 r2 = 2r1 a5 = ๏ญa1+a4 r5 = ๏ญr1+r4
7
Column Correspondence Theorem โ Intuitive Idea
๐ 1 + ๐ 2 = ๐ 3 ๐ด= ๐ 1 + ๐ 2 = ๐ 3 ๐ 1 + ๐ 2 = ๐ 3 ๐ท= โ7 โ4 ๐ต= ๐ 1 + ๐ 2 = ๐ 3 ๐ถ= Column Correspondence Theorem (Column ้็ๆฟ่ซพ)๏ผ ๅฐฑ็ฎ row elementary operation ่ฎ column ่ฎ็ไธๅ๏ผไปๅไน้็้ไฟๆฐธ้ ไธ่ฎใ
8
Column Correspondence Theorem โ Reason
Before we start: RREF Coefficient Matrix: ๐ด ๐
RREF ๐
๐ โฒ Augmented Matrix: ๐ด ๐ ๐ด ๐ ๐
๐โฒ
9
Column Correspondence Theorem โ Reason
The RREF of matrix A is R The RREF of augmented matrix ๐ด ๐ is ๐
๐โฒ ๐ด๐ฅ=๐ and ๐
๐ฅ=๐ have the same solution set? ๐ด๐ฅ=๐ and ๐
๐ฅ=๐โฒ have the same solution set P120 ๐ด๐ฅ=0 and ๐
๐ฅ=0 have the same solution set If ๐=0, then ๐โฒ=0.
10
Column Correspondence Theorem โ Reason
The RREF of matrix A is R, ๐ด๐ฅ=0 and ๐
๐ฅ=0 have the same solution set a1 a2 a3 a4 a5 a6 r1 r2 r3 r4 r5 r6 a2 = 2a1 ๐ฅ= โ ๐ฅ= โ r2 = 2r1 ๐ด๐ฅ=0 ๐
๐ฅ=0 -2a1+a2=0 -2r1+r2=0
11
Column Correspondence Theorem โ Reason
The RREF of matrix A is R, ๐ด๐ฅ=0 and ๐
๐ฅ=0 have the same solution set a1 a2 a3 a4 a5 a6 r1 r2 r3 r4 r5 r6 a5 = ๏ญa1+a4 ๐ฅ= โ1 1 0 ๐ฅ= โ1 1 0 r5 = ๏ญr1+r4 ๐ด๐ฅ=0 ๐
๐ฅ=0 a1-a4+a5=0 r1-r4+r5=0
12
How about Rows? NO Are there row correspondence theorem?
๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐ ๐ ๐ป ๐๐๐๐ ๐ ๐ , ๐ ๐ , ๐ ๐ , ๐ ๐ = ๐๐๐๐ ๐ ๐ , ๐ ๐ , ๐ ๐ , ๐ ๐ Are they the same?
13
Span of Columns ๐ด= ๐ ๐ โฏ ๐ ๐ ๐
= ๐ ๐ โฏ ๐ ๐ ๐๐๐๐ ๐ ๐ , โฏ , ๐ ๐
๐ด= ๐ ๐ โฏ ๐ ๐ ๐
= ๐ ๐ โฏ ๐ ๐ ๐๐๐๐ ๐ ๐ , โฏ , ๐ ๐ ๐๐๐๐ ๐ ๐ , โฏ , ๐ ๐ Are they the same? The elementary row operations change the span of columns.
14
NOTE Original Matrix v.s. RREF Columns:
The relations between the columns are the same. The span of the columns are different. Rows: The relations between the rows are changed. The span of the rows are the same.
15
RREF v.s. Independent ๅพ RREF ไธ็ผ็ๅบ rank
16
Column Correspondence Theorem
pivot columns Leading entries linear independent linear independent The pivot columns are linear independent.
17
Column Correspondence Theorem
pivot columns Leading entries a2 = 2a1 a5 = ๏ญa1+a4 a6 = ๏ญ5a1๏ญ3a3+2a4 r2 = 2r1 r5 = ๏ญr1+r4 r6 = ๏ญ5r1๏ญ3r3+2r4 The non-pivot columns are the linear combination of the previous pivot columns.
18
Columns are linear independent
3X3 All columns are independent โ โ โ โ โ โ โ โ โ Columns are linear independent Every column is a pivot column RREF Every column in RREF(A) is standard vector. Identity matrix
19
Columns are linear independent
4X3 โ โ โ โ โ โ โ โ โ โ โ โ All columns are independent Columns are linear independent Every column is a pivot column RREF Every column in RREF(A) is standard vector. ๐ผ ๐ถ
20
Columns are linear independent
3X4 โ โ โ โ โ โ โ โ โ โ โ โ All columns are independent Columns are linear independent Every column is a pivot column Cannot be a pivot column RREF โ 0 โ 1 โ Every column in RREF(A) is standard vector.
21
Independent โ โ โ โ โ โ โ โ โ โ โ โ ๅ ็บๅคช่ไบ๏ผ่ชๅทฑ่ตฐไธๅ
โ โ โ โ โ โ โ โ โ โ โ โ The columns are dependent (็ฎ่ๅ) Dependent or Independent? More than 3 vectors in R3 must be dependent. More than m vectors in Rm must be dependent.
22
Independent โ Intuition
23
RREF v.s. Rank ๅพ RREF ไธ็ผ็ๅบ rank
24
Rank = = Rank = ? 3 Rank = ? 3 Maximum number of Independent Columns
Number of Pivot Column = Number of Non-zero rows Rank = ? 3
25
Properties of Rank from RREF
Maximum number of Independent Columns Rank A โค Number of columns = Number of Pivot Column Rank A โค Min( Number of columns, Number of rows) = Number of Non-zero rows Rank A โค Number of rows
26
Properties of Rank from RREF
Matrix A is full rank if Rank A = min(m,n) Given a mxn matrix A: Rank A โค min(m, n) Because โthe columns of A are independentโ is equivalent to โrank A = nโ If m < n, the columns of A is dependent. In Rm, you cannot find more than m vectors that are independent. โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ , โ โ โ , โ โ โ , โ โ โ ๆช็ๅ
็ 3 X 4 A matrix set has 4 vectors belonging to R3 is dependent Rank A โค 3
27
Basic, Free Variables v.s. Rank
3 useful equations ๐ด๐ฅ=๐ The rank of [A b] is the number of โusefulโ equations in the system of linear equations Ax = b (i.e., the number of nonzero rows in [R c]). The rank of A represents the number of basic variables while the nullity of A is the number of free variables. ๐ด ๐ RREF(๐ด) ๐โ rank = non-zero row = 3 basic variables No. column โnon-zero row nullity = = 2 free variables
28
Nullity = no. column - rank
Maximum number of Independent Columns Number of Pivot Column Number of Non-zero rows of RREF Number of Basic Variables Nullity = no. column - rank One of the statement is fake!!!!!!!!!!!!!! Number of zero rows of RREF Number of Free Equations
29
RREF v.s. Span ๅพ RREF ไธ็ผ็ๅบ rank
30
Consistent or not Given Ax=b, if the reduced row echelon form of [ A b ] is Consistent b is in the span of the columns of A inconsistent b is NOT in the span of the columns of A 0โ ๐ฅ 1 +0โ ๐ฅ 2 +0โ ๐ฅ 3 =1
31
Consistent or not Ax =b is inconsistent (no solution)
The RREF of [A b] is โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ โ ๐ Only the last column is non-zero ๐โ 0 Rank A โ rank [A b] Need to know b
32
Consistent or not Ax =b is consistent for every b
RREF of [A b] cannot have a row whose only non-zero entry is at the last column RREF of A cannot have zero row Rank A = no. of rows
33
Consistent or not Ax =b is consistent for every b Rank A = no. of rows
โ โ โ โ โ โ โ โ โ โ โ โ 3 independent columns e.g. Ax =b is consistent for every b Rank A = no. of rows Every b is in the span of the columns of A= ๐ 1 โฏ ๐ ๐ Every b belongs to S๐๐๐ ๐ 1 , โฏ , ๐ ๐ S๐๐๐ ๐ 1 , โฏ , ๐ ๐ = ๐
๐ m independent vectors can span ๐
๐ More than m vectors in Rm must be dependent.
34
More than m vectors in Rm must be dependent.
m independent vectors can span ๐
๐ ๐ Consider R2 ๐ ๐ yes independent
35
Full Rank: Rank = n & Rank = m
1 โ โ โ โ โ โ โฎ โฎ โฎ โ โ โ โ โ โ โฎ โฎ โฎ โฎ โฎ โฎ โ โ โ โ โ โ โฎ โฎ โฎ โ โ โ โ โ โ The size of A is mxn 1 Rank A = n A is square or ้ซ็ฆ Ax = b has at most one solution The columns of A are linearly independent. ๐ผ ๐ถ All columns are pivot columns. RREF of A:
36
Full Rank: Rank = n & Rank = m
1 โ โ โ โ โ โ โฎ โฎ โฎ โ โ โ โ โ โ โฎ โฎ โฎ โฎ โฎ โฎ โ โ โ โ โ โ โฎ โฎ โฎ โ โ โ โ โ โ The size of A is mxn 1 Rank A = m A is square or ็ฎ่ 1 1 Every row of R contains a pivot position (leading entry). Ax = b always have solution (at least one solution) for every b in Rm. The columns of A generate Rm.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.