Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm-up: Find the tan 5

Similar presentations


Presentation on theme: "Warm-up: Find the tan 5"β€” Presentation transcript:

1 Warm-up: Find the tan 5πœ‹ 3 HW: pg.387 (2 – 16 even, 33 – 36, 37 – 39, 47 – 52, 59 – 66)

2 HW Answers: Pg (1 – 29 odd, 32, 36, 40, 46, 50) 1) 𝑠𝑖𝑛𝑑= 4 5 , π‘π‘œπ‘ π‘‘=βˆ’ 3 5 , π‘‘π‘Žπ‘›π‘‘=βˆ’ 4 3 , 𝑐𝑠𝑐𝑑= 5 4 , 𝑠𝑒𝑐𝑑=βˆ’ 5 3 , π‘π‘œπ‘‘π‘‘=βˆ’ 3 4 3) 𝑠𝑖𝑛𝑑=βˆ’ , π‘π‘œπ‘ π‘‘= 8 17 , π‘‘π‘Žπ‘›π‘‘=βˆ’ 15 8 , 𝑐𝑠𝑐𝑑=βˆ’ , 𝑠𝑒𝑐𝑑= 17 8 , π‘π‘œπ‘‘π‘‘=βˆ’ 8 15 5) , ) βˆ’ , ) βˆ’ 1 2 ,βˆ’ ) (0, -1) 13) 𝑠𝑖𝑛 πœ‹ 4 = , π‘π‘œπ‘  πœ‹ 4 = , tan πœ‹ 4 =1 15) 𝑠𝑖𝑛 βˆ’ πœ‹ 6 =βˆ’ 1 2 , π‘π‘œπ‘  βˆ’ πœ‹ 6 = , tan βˆ’ πœ‹ 6 =βˆ’ 17) 𝑠𝑖𝑛 βˆ’ 5πœ‹ 4 =βˆ’ , π‘π‘œπ‘  βˆ’ 5πœ‹ 4 =βˆ’ , tan βˆ’ 5πœ‹ 4 =βˆ’1 19) 𝑠𝑖𝑛 11πœ‹ 6 =βˆ’ 1 2 , π‘π‘œπ‘  11πœ‹ 6 = , tan 11πœ‹ 6 =βˆ’ 21) 𝑠𝑖𝑛 4πœ‹ 3 =βˆ’ , π‘π‘œπ‘  4πœ‹ 3 =βˆ’ 1 2 , tan 4πœ‹ 3 = 3 23) 𝑠𝑖𝑛 βˆ’ 3πœ‹ 2 =1, π‘π‘œπ‘  βˆ’ 3πœ‹ 2 =0, tan βˆ’ 3πœ‹ 2 =𝑒𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 25) 𝑠𝑖𝑛 3πœ‹ 4 = , π‘π‘œπ‘  3πœ‹ 4 =βˆ’ , π‘‘π‘Žπ‘› 3πœ‹ 4 =βˆ’1, 𝑐𝑠𝑐 3πœ‹ 4 = 2 , 𝑠𝑒𝑐 3πœ‹ 4 =βˆ’ 2 ,π‘π‘œπ‘‘ 3πœ‹ 4 =βˆ’1 27)𝑠𝑖𝑛 πœ‹ 2 =1, π‘π‘œπ‘  πœ‹ 2 =0, π‘‘π‘Žπ‘› πœ‹ 2 =𝑒𝑛𝑑𝑒𝑓, 𝑐𝑠𝑐 πœ‹ 2 =1, 𝑠𝑒𝑐 πœ‹ 2 =𝑒𝑛𝑑𝑒𝑓,π‘π‘œπ‘‘ πœ‹ 2 =0 29) 𝑠𝑖𝑛 βˆ’ 4πœ‹ 3 = , π‘π‘œπ‘  βˆ’ 4πœ‹ 3 =βˆ’ 1 2 , π‘‘π‘Žπ‘› βˆ’ 4πœ‹ 3 =βˆ’ 3 , 𝑐𝑠𝑐 βˆ’ 4πœ‹ 3 = , 𝑠𝑒𝑐 βˆ’ 4πœ‹ 3 =βˆ’2, π‘π‘œπ‘‘ βˆ’ 4πœ‹ 3 =βˆ’ 32) -1 36) -1/2 40) a. -2/5 b. -5/2 46) 0 50)

3 4.3 Right Triangle Trigonometry
Objective: Evaluate 6 trigonometric functions Identify Trigonometric Identities Evaluate trigonometric functions with a calculator. Applications Involving right triangles

4 The Unit Circle: Radian Measures and Coordinates

5 Right Triangle Definitions of Trigonometric Functions
hyp opp  adj

6 Example: Find the six trig functions of . Pythagorean Theorem
(opp)2 + (adj)2 = (hyp)2 = hyp2 = hyp 5 4  3

7 Example: Evaluate Trig functions of 45ο‚°. Pythagorean Theorem
(1)2 + (1)2 = (β„Žπ‘¦π‘)2 2 = hyp2 2 = hyp 45ο‚° 2 1 45ο‚° 1

8 Example: Evaluate Trig functions of 60ο‚°. 30ο‚° 2 3 60ο‚° 1

9 Fundamental Trigonometric Identities:
Reciprocal Identities: Quotient Identities: Pythagorean Identities:

10 Applying Trig Identities:
Let  be an acute angle such that sin = Find the values of a) cos and b) tan using trig identities. 1 0.6  0.8

11 Applying Trig Identities:
Let  be an acute angle such that tan = 3 Find the values of a) cot and b) sec using trig identities. 10 3  1

12 Solving a Right Triangle
Ex) A surveyor is standing 50 ft from the base of a large tree. The measure of elevation to the top of the tree is 71.5ο‚°. How tall is the tree? x 71.5ο‚° 50ft

13 Ex) A person is 200 yards from a river
Ex) A person is 200 yards from a river. The person walks 400 yards along a straight path to the rivers edge. Find the acute angle  between the river and the path.  200yd From unit circle: 400yd

14 Ex) A 12m flagpole casts a 9m shadow, Find the angle of elevation of the sun.
Calculator: Tan-1 ( ο‚Έ Enter 12m  9m

15 Sneedlegrit: Find  using a trig ratio.
4 2  HW: pg.387 (2 – 16 even, 33 – 36, 37 – 39, 47 – 52, 59 – 66)


Download ppt "Warm-up: Find the tan 5"

Similar presentations


Ads by Google