Download presentation
Presentation is loading. Please wait.
1
Rule Selection as Submodular Function
Wentao Ding
2
Rule Selection Problem
A combination of two weighted coverage functions. maximize π» πππ π ,πππ π s.t. π: π‘ π βπ
π π₯ π > π¦ π π¦ π β 0,1 π₯ π β 0,1 R1 R2 R3 R4 : Positive : Negative
3
Submodular Function Submodular: Maximize a submodular function
Def 1: βπ΄βπ΅. π π΄βͺ π₯ βπ π΄ β₯π π΅βͺ π₯ βπ π΅ Def 2: βπ΄βπ΅. π π΄ +π π΅ β₯π π΄βͺπ΅ +π π΄β©π΅ Coverage function is monotone submodular function. Maximize a submodular function usuallyΒ NP-hard. Β½-approx if symmetric, πβ1 π -approx if monotone. Combination of two submodular functions Close under non-negative linear combinations. Difference of Submodular function: Inapproximable. Ratio of Submodular function: Depends
4
Rule Section Problem Let #πππ π‘ππ£π #πππ =πΆ, πππ π #πππ =π π , πππ π #πππ =π π . TP=π π FP=π π TN=1βπΆβπ π FN=πΆβπ π ππππππ πππ= TP TP+FP = π π π π +π π π
πππππ= TP TP+FN = π π πΆ π¨πππππππ= TP+TN 1 =1βπΆ+π π βπ π π π = 2TP 2TP+FP+FN = 2π π πΆ+π π +π π β π π π π
5
Ratio of submodular function
min π π π π βπΆ.π π β₯πΆ min π π πΆ max π π π π βπ΅.π π β€π΅ max π π π΅ A Submodular Cover (SCSC) / Submodular Knapsack (SCSK) max π π πβπβ§π π β₯πΆ π,π:submodular max π π πβπβ§π π β€π΅ π,π:submodular Can be approximated by ratio based greedy method
6
Curvature of submodular function
π¦ π =1β min π£βπ π π£ πβπ£ π π£ β 0,1 Approximate ratio with simple greedy algorithm π π πΊ π π πΊ β€ 1 1β exp π¦ π β1 β
π π β π π β (if π¦ π =0, there exists an π-bounded scheme) R1 R2 R3 R4 π¦ π = 1 2 π¦ π =1 a (1+)-approximation for RS minimization in O(log(1/)) calls to the subroutine
7
Optimizing RS Ellipsoid ApproximationοΌO π log π -approx.
Related Learning Problem Submodular optimization Feature selection Data subset selection (Document Summarization) β¦β¦
8
Reference George L. Nemhauser, Laurence A. Wolsey, Marshall L. Fisher: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1): (1978) Michele Conforti, GΓ©rard CornuΓ©jols: Submodular set functions, matroids and the greedy algorithm: Tight worst-case bounds and some generalizations of the Rado-Edmonds theorem. Discrete Applied Mathematics 7(3): (1984) Mukund Narasimhan, Jeff A. Bilmes: A Submodular-supermodular Procedure with Applications to Discriminative Structure Learning. UAI 2005: Rishabh K. Iyer, Jeff A. Bilmes: Submodular Optimization with Submodular Cover and Submodular Knapsack Constraints. NIPS 2013: Rishabh K. Iyer, Jeff A. Bilmes: Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications. UAI 2012: Wenruo Bai, Rishabh K. Iyer, Kai Wei, Jeff A. Bilmes: Algorithms for Optimizing the Ratio of Submodular Functions. ICML 2016:
9
Thanks for listening Q & A
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.