Presentation is loading. Please wait.

Presentation is loading. Please wait.

有限密度・ 温度におけるハドロンの性質の変化

Similar presentations


Presentation on theme: "有限密度・ 温度におけるハドロンの性質の変化"— Presentation transcript:

1 有限密度・ 温度におけるハドロンの性質の変化
vector meson 有限密度・ 温度におけるハドロンの性質の変化 Philipp Gubler, JAEA P. Gubler and K. Ohtani, Phys. Rev. D 90, (2014)            P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015). P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016). H.J. Kim, P. Gubler and S.H. Lee, Phys. Lett. B 772, 194 (2017).                        Talk at「原子核中におけるハドロンの性質とカイラル対称性の役割」 ELPH, Tohoku University, Sendai, Japan September 11, 2018

2 Introduction Spectral functions at finite density broadening?
How can it be measured? How is this complicated behavior related to the change of QCD condensates? modification at finite density broadening? mass/threshold shifts? coupling to nucleon resonances?

3 Recent theoretical works about the φ
based on hadronic models P N Forward KN (or KN) scattering amplitude P. Gubler and W. Weise, Phys. Lett. B 751, 396 (2015). P. Gubler and W. Weise, Nucl. Phys. A 954, 125 (2016).

4 Recent theoretical works about the φ
based on hadronic models large dependence on details of the model incorporating Baryon - Vector meson interaction SU(6): Spin-Flavor Symmetry extension of standard flavor SU(3) HLS: Hidden Local Symmetry Common features: strong broadening, small negative mass shift See also: D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C 95, (2017). D. Cabrera, A.N. Hiller Blin and M.J. Vicente Vacas, Phys. Rev. C 96, (2017).

5 Recent theoretical works about the φ
based on the quark-meson coupling model Some φA bound states might exist, but they have a large width J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Lett. B 771, 113 (2017). J.J. Cobos-Martinez, K. Tsushima, G. Krein and A.W. Thomas, Phys. Rev. C 96, (2017). → difficult to observe experimentally ?

6 no distortion of signal due to interaction with nuclear medium
Vector mesons in experiment One method: proton induced interactions on nuclei p e f no strong interaction low (zero?) temperature no distortion of signal due to interaction with nuclear medium approximate density: normal nuclear density ρ0 E325 (KEK) E16 (J-PARC)

7 large probability of vector meson decay outside of the nucleus
However, some caution is needed p e f large probability of vector meson decay outside of the nucleus Non-trivial non-equilibrium process?? density much below ρ0

8 Therefore, uniquely determining the spectral function at normal nuclear matter density is not easy!
outside decay p e f inside decay + = Experimentally observed spectrum

9 Example from HADES: All are consistent with data
vacuum spectral functions All are consistent with data p + Nb collisions at Ekin = 3.5 GeV Niobium (ニオブ): 41 protons 52 neutrons collisional broadening for ρ meson No definite conclusion about the finite density behavior of the ρ can be drawn mass shift for ρ meson collisional broadening + mass shift for ρ meson O. Buss et. al., Phys. Rept. 512, 1 (2012).

10 Therefore, systematic measurements are important
Change the size of the target nucleon Change vector meson velocity Y. Morino et. al. (J-PARC E16 Collaboration), JPS Conf. Proc. 8, (2015).

11 Fitting Results bg<1.25 (Slow) 1.25<bg<1.75 1.75<bg (Fast)
Small Nucleus Large Nucleus R. Muto et al, Phys. Rev. Lett. 98, (2007).

12 Experimental Conclusions
R. Muto et al, Phys. Rev. Lett. 98, (2007). Pole mass: 35 MeV negative mass shift at normal nuclear matter density Pole width: Increased width to MeV at normal nuclear matter density Caution! Fit to experimental data is performed with a simple Breit-Wigner parametrization Too simple??

13 M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys
M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979). QCD sum rules Makes use of the analytic properties of the correlation function: q2 spectral function scalar condensates: trivial dispersion relation non-scalar condensates: non-trivial dispersion relation

14 More on the operator product expansion (OPE)
non-perturbative condensates perturbative Wilson coefficients Change in hot or dense matter!

15 Structure of QCD sum rules for the phi meson
In Vacuum Dim. 0: Dim. 2: Dim. 4: Dim. 6:

16 Structure of QCD sum rules for the phi meson
In Nuclear Matter Dim. 0: Dim. 2: Dim. 4: Dim. 6:

17 Recent results from lattice QCD
S. Durr et al. (BMW Collaboration), Phys. Rev. Lett. 116, (2016). (Feynman-Hellmann) Y.-B. Yang et al. (χQCD Collaboration), Phys. Rev. D 94, (2016). (Direct) A. Abdel-Rehim et al. (ETM Collaboration), Phys. Rev. Lett. 116, (2016). (Direct) G.S. Bali et al. (RQCD Collaboration), Phys. Rev. D 93, (2016). (Direct) N. Yamanaka et al. (JLQCD Collaboration), arXiv: [hep-lat]. (Direct)

18 Results for the φ meson mass
Most important parameter, that determines the behavior of the φ meson mass at finite density: Strangeness content of the nucleon P. Gubler and K. Ohtani, Phys. Rev. D 90, (2014).

19 Compare Theory with Experiment
Sum Rules + Experiment Not consistent? Experiment Lattice QCD

20 Condensates that appear in the vector channel
scalar non-scalar OPE not yet available For ρ, ω: For φ:

21 OPE calculation Mass singularities in chiral limit!
Subtract corresponding quark condensate contribution S. Kim and S.H. Lee, Nucl. Phys. 679, 517 (2001). H.J. Kim, P. Gubler and S.H. Lee, Phys. Lett. B 772, 194 (2017).

22 OPE result H.J. Kim, P. Gubler and S.H. Lee, Phys. Lett. B 772, 194 (2017).

23 Next Carry out numerical analysis and make predictions for the E16 experiment at J-PARC ? What condensate is most important for determining the momentum dependence? ?

24 Summary and Conclusions
In hadronic models, meson spectra are typically modified in a complicated manner: broadening, mass shifts, additional peaks Vector meson spectral functions are hard to measure experimentally: systematic measurements are important/necessary! The φ-meson mass shift in nuclear matter constrains the strangeness content of the nucleon: Increasing φ-meson mass in nuclear matter Decreasing φ-meson mass in nuclear matter Next goal: make predictions about the behavior of the φ-meson in nuclear matter with finite momentum

25 Backup slides

26 φ meson mφ = 1019 MeV Γφ = 4.3 MeV


Download ppt "有限密度・ 温度におけるハドロンの性質の変化"

Similar presentations


Ads by Google