Download presentation
Presentation is loading. Please wait.
1
Section 9.1 Day 3 Graphing Quadratic Functions
Algebra 1
2
Learning Targets Define and identify a quadratic function in standard form Identify a parabola shape and graph which is unique to the quadratic function Define and identify the axis of symmetry, vertex, number of zeros, domain and range of a quadratic graph Identify if the quadratic function has a graph with a maximum or a minimum Graph a quadratic function using a table
3
Recall: Standard Form Standard Form: 𝑎 𝑥 2 +𝑏𝑥+𝑐 Graphing Procedure:
Find the vertex 𝑥=− 𝑏 2𝑎 Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape
4
Vertex Form Vertex Form: 𝑦=𝑎 𝑥−ℎ 2 +𝑘 Graphing Procedure:
Identify the vertex: (ℎ, 𝑘) Fill in a 5 point table with the vertex as the center Plot the points Confirm the parabola shape
5
Example 1: Graphing 𝒙 𝒇(𝒙) 2 5 3 4 1 6 𝒙 𝒇(𝒙) Graph 𝑓 𝑥 = 𝑥−4 2 +1
Vertex: (4, 1) 𝒙 𝒇(𝒙) 2 5 3 4 1 6 𝒙 𝒇(𝒙)
6
Example 1: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥=4 Vertex: (4, 1) # of Zeros: 0 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦≥1
7
Example 2: Graphing 𝒙 𝒇(𝒙) 𝒙 𝒇(𝒙) −3 −6 −2 −1 2 1
−1 2 1 Graph 𝑓 𝑥 =−2 𝑥 Vertex: (−1, 2)
8
Example 2: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥=−1 Vertex: (−1, 2) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Maximum Domain: All Real Numbers Range: 𝑦≤2
9
Example 3: Graphing 𝒙 𝒇(𝒙) −8 1 −5 2 −4 3 4 𝒙 𝒇(𝒙)
−8 1 −5 2 −4 3 4 𝒙 𝒇(𝒙) Graph 𝑓 𝑥 =− 𝑥−2 2 −4 Vertex: (2, −4)
10
Example 3: Identifying Axis of Symmetry: Vertex: # of Zeros:
𝑥=2 Vertex: (2,− 4) # of Zeros: 2 (x-intercepts) Maximum/Minimum: Minimum Domain: All Real Numbers Range: 𝑦≥−4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.