Download presentation
Presentation is loading. Please wait.
1
VMI-fitting results for V(m+i), i=4-10
Helgi Rafn Hróðmarsson – 31/7/14
2
Two fitting formulas 1) I=A(1+b2P2(cosq)) 2) I=A(1+b2P2(cosq)+b4P4(cosq))
3
V(m+4)
4
„Peak A“ – fit 1 I=A(1+b2P2(cosq))
6
„Peak A“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
8
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,6488 0,017 1,6591 0,0171 -0,02663 0,0132 1 1,0712 0,0628 1,1928 0,039 -0,29651 0,0339 2 1,1306 0,0703 1,1583 0,0758 -0,068 0,0667 3 0,869 0,0301 0,92743 0,0219 -0,13968 0,0204 4 0,54273 0,0458 0,6463 0,0336 -0,23991 0,0338 5 0,38393 0,0433 0,48213 0,0349 -0,22407 0,0366 6 0,41285 0,031 0,49846 0,0165 -0,19587 0,0173 7 0,27025 0,0271 0,33504 -0,14625 0,0238 8 0,01811 0,0331 0,078555 0,0343 -0,13335 0,0393
10
For Peak A, the second fitting formula gives generally better fits (as to be expected). For future references, we will thusly use the results of the second fit.
11
„Peak B“ – fit 1 I=A(1+b2P2(cosq))
13
„Peak B“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
15
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 0,78797 0,0321 0,79874 355 -0,02556 0,0345 1 0,18865 0,0413 0,32613 0,0093 -0,30805 0,0101 2 0,2283 0,0303 0,31634 0,0179 -0,19799 0,0195 3 0,24625 0,0375 0,36421 0,0141 -0,2657 0,0152 4 0,07417 0,0276 0,16334 0,0139 -0,19771 0,0156 5 -0,06256 0,034 0,044024 0,0224 -0,2334 0,0258 6 0,039067 0,0322 0,061667 0,0377 -0,04997 0,0434 7 -0,13348 0,0204 -0,1227 0,0245 -0,02345 0,0291 8 -0,07592 0,0437 -0,06621 0,0526 -0,02124 0,0619
17
Again, the fits for the second formula give much better results, so they will be used.
18
„Peak D“ – fit 1 I=A(1+b2P2(cosq))
20
„Peak D“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
22
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,8545 0,182 1,8923 0,192 -0,10015 0,139 1 1,7377 1,8192 0,2 -0,2131 0,147 2 1,5114 0,138 1,5863 0,143 -0,1912 0,112 3 1,4466 0,21 1,5281 0,224 -0,20664 0,178 4 0,96951 0,251 1,3342 0,232 -0,88042 0,203 5 1,2466 0,209 1,2946 0,227 -0,11906 6 1,2021 0,22 1,2634 0,239 -0,15154 0,204 7 0,9887 0,153 1,1738 0,136 -0,54136 0,127 8 1,2743 0,284 1,243 0,304 0,077825 0,263
24
„Peak G“ – fit 1 I=A(1+b2P2(cosq))
26
„Peak G“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
28
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,487 0,101 1,5263 0,106 -0,09999 0,0845 1 1,5638 0,123 1,544 0,13 0,050664 0,104 2 1,6289 0,0749 1,6417 0,0795 -0,03304 0,0615 3 1,0447 0,161 1,2737 0,145 -0,55694 0,124 4 1,4149 0,274 1,3527 0,289 0,15713 0,244 5 1,1635 0,227 1,165 0,246 -0,00371 0,217 6 0,89705 0,116 1,0246 0,117 -0,30587 0,107 7 0,68913 0,138 0,85478 0,143 -0,38911 0,137 8 1,0506 0,264 0,88078 0,27 0,4134 0,265
31
V(m+5)
32
„Peak A“ – fit 1 I=A(1+b2P2(cosq))
34
„Peak A“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
36
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,2189 0,0287 1,2488 0,0276 -0,07404 0,0237 1 0,64142 0,0768 0,84326 0,0296 -0,47193 0,0285 2 0,57808 0,0431 0,69487 0,0171 -0,27143 0,017 3 0,47721 0,0314 0,53331 0,0292 -0,11291 0,0303 4 0,25824 0,0233 0,29722 0,0236 -0,08791 0,0258
38
„Peak B“ – fit 1 I=A(1+b2P2(cosq))
40
„Peak B“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
42
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 0,10063 0,0125 0,1072 0,0147 -0,01459 0,0168 1 -0,20745 0,0136 -0,17662 0,0135 -0,06664 0,0162 2 -0,19441 0,0342 -0,10975 0,0324 -0,18324 0,0382 3 -0,10005 0,0138 -0,07613 0,0148 -0,05221 0,0175 4 -0,10907 0,0364 -0,0349 0,0374 -0,16176 0,0436
44
„Peak D“ – fit 1 I=A(1+b2P2(cosq))
46
„Peak D“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
48
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,5287 0,0992 1,5704 0,104 -0,10649 0,0819 1 1,5877 0,111 1,5964 0,117 -0,02687 0,0969 2 1,429 0,151 1,4587 0,162 -0,07517 0,131 3 1,37 1,3553 0,123 0,044624 0,109 4 1,1182 0,195 1,0675 0,209 0,12423 0,19
50
„Peak G“ – fit 1 I=A(1+b2P2(cosq))
52
„Peak G“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
54
J‘ b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 1,5526 0,0602 1,6443 0,0392 -0,23508 0,0302 1 1,5034 0,0831 1,6248 0,0596 -0,30956 0,0462 2 1,2244 0,099 1,4259 0,0376 -0,49916 0,031 3 1,3671 0,113 1,4871 0,106 -0,30153 0,0854 4 1,2738 0,121 1,2439 0,13 0,07446 0,112
57
V(m+4) & V(m+5)
58
V(m+6), V(m+7), V(m+8), V(m+9), V(m+10) – J‘=0
59
„Peak A“ – fit 1 I=A(1+b2P2(cosq))
61
„Peak A“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
63
J‘=0 b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 V(m+6) -0,67914 0,00494 -0,69176 0,00508 0,026181 0,00628 V(m+7) 1,3751 0,039 1,4342 0,0287 -0,14865 0,0234 V(m+8) 1,5472 0,0377 1,6107 0,0195 -0,16266 0,0152 V(m+9) 1,5503 0,0745 1,667 0,0461 -0,29896 0,0353 V(m+10) 1,6934 0,042 1,6857 0,0443 0,02006 0,0339
64
„Peak B“ – fit 1 I=A(1+b2P2(cosq))
66
„Peak B“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
68
J‘=0 b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 V(m+6) 0,69321 0,0316 0,65747 0,0322 0,083996 0,0326 V(m+7) 1,2832 0,098 1,2096 0,0981 0,18342 0,0863 V(m+8) 0,97405 0,0919 0,91639 0,0968 0,13927 0,0918 V(m+9) 0,57049 0,0549 0,62749 0,0586 -0,13039 0,0593 V(m+10) 1,3592 0,0458 1,3263 0,0441 0,099806 0,0394
69
„Peak D“ – fit 1 I=A(1+b2P2(cosq))
71
„Peak D“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
73
J‘=0 b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 V(m+6) 2,0183 0,177 1,99 0,182 0,091099 0,137 V(m+7) 2 0,347 0,337 0,44249 0,235 V(m+8) 1,661 0,244 1,7725 0,255 -0,289 0,19 V(m+9) 1,8085 0,201 1,6281 0,164 0,56971 0,141 V(m+10) 1,9017 0,186 1,8866 0,196 0,040398 0,142
74
„Peak G“ – fit 1 I=A(1+b2P2(cosq))
76
„Peak G“ – fit 2 I=A(1+b2P2(cosq)+b4P4(cosq))
78
J‘=0 b2 (fit 1) Db2 b2 (fit 2) b4 (fit 2) Db4 V(m+6) 1,8527 0,127 1,9483 0,122 -0,25303 0,0869 V(m+7) 1,5703 0,276 1,9131 0,229 -0,8802 0,172 V(m+8) 1,8235 0,217 1,627 0,191 0,51842 0,155 V(m+9) 1,9747 0,12 2,0244 -0,15953 0,0886 V(m+10) 1,5868 0,139 1,7724 0,0807 -0,57386 0,0645
81
Summary figures:
82
b2 vs i and J´ V(m+4); J´= 0-8; fit 2 V(m+5); J´= 0-4; fit 2
V(m+i); i = 6-10 (J´= 0); fit 2
83
See explanation below See explanation below See explanation below
84
Comment: 1) The drop in b2 from i= 4 to i = 5 (and from i = 8 to i = 9), for the„H*+Br“ channel (peak B), i.e. an increasing perpendicular transition contribution, is for those V(m+i) states which experience largest interactions with the E(0) (and E(1)) state(s),See: :
85
-hence those states which experience largest E state character, but according to
Fig. from HBr-VMI manuscript
86
-an increased E character will result in an enhanced perpendicular transition contribution
The perpendicular transition contribution is even larger for J´s larger than zero (J´>0) : : ) The drop (enhanced perpendicular contribution) in the „H* + Br*“ for i = 6 is a bit of a surprise and could possibly be because of a signal overlap or interaction with the f3D1(1) state(?). …SEE below
87
More about V(m+6) and f3D1(v):
88
https://notendur.hi.is/~agust/rannsoknir/papers/jcp93-4624-90.pdf:
: These look like Q lines of a Rydberg state H81Br+ H79Br+ 81Br+ 79Br+ H+ V(m+6);Q J´= ?
89
It does not look as if there is any overlap between V(m+6), J´= 0 and f3D1(1) peaks
-anyway the KER for V(m+6) fits nicely into the trend of the KER´s for V(m+i); i = 4-10 (see Fig. below) BUT: possibly there is a strong near –resonanace interaction between V(m + 6), J´= 0 and f3D1(v´=1), J´= 0 resulting in an enhanced perpendicular character of the V(m + 6) photodissociation! NB according to C&G (see slide 87 above) the energy difference is only DE J´= 9.4 cm-1!.... : Fig. from HBr-VMI manuscript
90
https://notendur.hi.is/~agust/rannsoknir/papers/jcp93-4624-90.pdf:
91
…NB: J´= 0 level of V(m+6) should not be affected by
f3D1(v´=1) since W = 1, hence J´= 0 does not exist! BUT: 79Br+ V(m+6);Q # = peak measured in Crete Possibly this is the J´= 0 peak and that peak # is J´= 1 but not J´=0 H+ x103/cm-1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.