Presentation is loading. Please wait.

Presentation is loading. Please wait.

Methods in calculus.

Similar presentations


Presentation on theme: "Methods in calculus."β€” Presentation transcript:

1 Methods in calculus

2 FM Methods in Calculus: inverse trig functions
KUS objectives BAT differentiate and integrate inverse trig functions using techniques from A2 Starter: find π’…π’š 𝒅𝒙 in terms of x and y for the following 𝑑𝑦 𝑑π‘₯ =βˆ’ π‘₯ 𝑦 π‘₯ 2 + 𝑦 2 =1 5 π‘₯ 2 +π‘₯𝑦+2 𝑦 2 =11 𝑑𝑦 𝑑π‘₯ = 10π‘₯+𝑦 π‘₯+4𝑦 π‘₯= tan 𝑦 𝑑𝑦 𝑑π‘₯ = 1 𝑠𝑒𝑐 2 𝑦

3 cos yΓ— dy dx = 1 = 1 π‘π‘œπ‘  2 𝑦 = 1 1βˆ’ 𝑠𝑖𝑛 2 𝑦 = 1 1βˆ’ π‘₯ 2 dy dx = 1 cos 𝑦
WB C1 a) show that 𝑑 𝑑π‘₯ arcsin π‘₯ = βˆ’ π‘₯ 2 Let y= arcsin π‘₯ Then sin y=sin arcsin π‘₯ =π‘₯ Differentiate implicitly cos yΓ— dy dx = 1 Rearrange and use identity = π‘π‘œπ‘  2 𝑦 = βˆ’ 𝑠𝑖𝑛 2 𝑦 = βˆ’ π‘₯ 2 dy dx = 1 cos 𝑦 Now b) show that 𝑑 𝑑π‘₯ arccos π‘₯ =βˆ’ βˆ’ π‘₯ 2 and c) show that 𝑑 𝑑π‘₯ arcπ‘‘π‘Žπ‘› π‘₯ = π‘₯ 2

4 βˆ’sin yΓ— dy dx = 1 =βˆ’ 1 𝑠𝑖𝑛 2 𝑦 =βˆ’ 1 1βˆ’ π‘π‘œπ‘  2 𝑦 =βˆ’ 1 1βˆ’ π‘₯ 2
C1 (cont) b) show that 𝑑 𝑑π‘₯ arccos π‘₯ =βˆ’ βˆ’ π‘₯ 2 Let y= arccos π‘₯ Differentiate implicitly Then cos y=π‘₯ βˆ’sin yΓ— dy dx = 1 Rearrange and use identity =βˆ’ 1 𝑠𝑖𝑛 2 𝑦 =βˆ’ 1 1βˆ’ π‘π‘œπ‘  2 𝑦 =βˆ’ 1 1βˆ’ π‘₯ 2 dy dx =βˆ’ 1 sin 𝑦 C c) show that 𝑑 𝑑π‘₯ arcπ‘‘π‘Žπ‘› π‘₯ = π‘₯ 2 Let y= arctan π‘₯ Then tan y=π‘₯ Differentiate implicitly 𝑠𝑒𝑐 2 𝑦× dy dx = 1 Rearrange and use identity π‘‘π‘Žπ‘› 2 𝑦+1= 𝑠𝑒𝑐 2 𝑦 dy dx = 1 𝑠𝑒𝑐 2 𝑦 = 1 π‘‘π‘Žπ‘› 2 𝑦+1 = 1 1+ π‘₯ 2

5 cos yΓ— dy dx = 2π‘₯ = 2π‘₯ 1βˆ’ 𝑠𝑖𝑛 2 𝑦 = 2π‘₯ 1βˆ’ π‘₯ 4 dy dx = 2π‘₯ cos 𝑦
WB C2 Given 𝑦= arcsin π‘₯ 2 , find 𝑑𝑦 𝑑π‘₯ a) Using implicit differentiation Using the chain rule and the formula for 𝑑 𝑑π‘₯ arcsin π‘₯ a) Let y= arcsin π‘₯ 2 Then sin y=sin arcsin π‘₯ 2 = π‘₯ 2 Differentiate implicitly cos yΓ— dy dx = 2π‘₯ Rearrange and use identity = 2π‘₯ 1βˆ’ 𝑠𝑖𝑛 2 𝑦 = 2π‘₯ 1βˆ’ π‘₯ 4 dy dx = 2π‘₯ cos 𝑦 b) Let t= π‘₯ 2 then y= arcsin 𝑑 Differentiate parametric equations Then dt dx =2π‘₯ and dy dt = 1 1βˆ’ 𝑑 2 use chain rule So dy dx = dt dx Γ— dy dt =2π‘₯Γ— βˆ’ 𝑑 2 So dy dx = 2π‘₯ 1βˆ’ π‘₯ 4

6 NOW DO EX 3C 𝑠𝑒𝑐 2 π‘₯ d𝑦 𝑑π‘₯ = βˆ’2 (1+π‘₯) 2 dy dx = 1 𝑠𝑒𝑐 2 π‘₯ Γ— βˆ’2 (1+π‘₯) 2
WB C3 Given 𝑦= 1βˆ’π‘₯ 1+π‘₯ find 𝑑𝑦 𝑑π‘₯ Let tan y= 1βˆ’π‘₯ 1+π‘₯ Differentiate RHS implicitly and LHS by quotient rule 𝑠𝑒𝑐 2 π‘₯ d𝑦 𝑑π‘₯ = 1+π‘₯ βˆ’1 βˆ’(1βˆ’π‘₯)(1) (1+π‘₯) 2 𝑠𝑒𝑐 2 π‘₯ d𝑦 𝑑π‘₯ = βˆ’2 (1+π‘₯) 2 Rearrange and use identity dy dx = 1 𝑠𝑒𝑐 2 π‘₯ Γ— βˆ’2 (1+π‘₯) 2 = π‘‘π‘Žπ‘› 2 π‘₯ Γ— βˆ’2 (1+π‘₯) 2 dy dx = βˆ’π‘₯ 1+π‘₯ 2 Γ— βˆ’2 (1+π‘₯) 2 =…= (1+π‘₯) π‘₯ 2 Γ— βˆ’2 (1+π‘₯) 2 𝑑𝑦 𝑑π‘₯ = βˆ’1 2+2 π‘₯ 2 NOW DO EX 3C

7 WB D1 By using an appropriate substitution, show that π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 where a is a positive constant and π‘₯ <π‘Ž 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= π‘Ž 2 1βˆ’βˆ’ π‘₯ π‘Ž 𝑑π‘₯= = 1 π‘Ž βˆ’ π‘₯ π‘Ž 𝑑π‘₯ 𝑒= π‘Ž π‘₯ 𝑑𝑒= 1 π‘Ž 𝑑π‘₯ = 1 π‘Ž βˆ’ 𝑒 𝑑π‘₯ = arcsin 𝑒 +𝐢 = arcsin π‘₯ π‘Ž +𝐢

8 WB D1 (cont) By using an appropriate substitution, show that a) π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 where a is a positive constant and π‘₯ <π‘Ž 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= π‘Ž 2 1βˆ’βˆ’ π‘₯ π‘Ž 𝑑π‘₯= = 1 π‘Ž βˆ’ π‘₯ π‘Ž 𝑑π‘₯ 𝑒= π‘₯ π‘Ž 𝑑𝑒= 1 π‘Ž 𝑑π‘₯ = βˆ’ 𝑒 𝑑𝑒 = arcsin 𝑒 +𝐢 = arcsin π‘₯ π‘Ž +𝐢 Now show that b) π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢

9 WB D1 (cont) By using an appropriate substitution, show that b) π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 where a is a positive constant and π‘₯ <π‘Ž 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž π‘₯ π‘Ž 𝑑π‘₯= 𝑒= π‘₯ π‘Ž 𝑑𝑒= 1 π‘Ž 𝑑π‘₯ = 1 π‘Ž 𝑒 2 𝑑𝑒 = 1 π‘Ž arctan 𝑒 +𝐢 = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢

10 WB D2 Find 4 5+ π‘₯ 2 𝑑π‘₯ 4 5+ π‘₯ 2 𝑑π‘₯= 4 1 5+ π‘₯ 2 𝑑π‘₯ π‘Ž 2 =5
1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 4 5+ π‘₯ 2 𝑑π‘₯= π‘₯ 2 𝑑π‘₯ π‘Ž 2 =5 = arctan π‘₯ 𝐢 = arctan π‘₯ 𝐢

11 WB D3 Find π‘₯ 2 𝑑π‘₯ 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 = 25 9 π‘₯ 2 𝑑π‘₯= π‘₯ 2 𝑑π‘₯ = arctan π‘₯ 𝐢 = arctan 3π‘₯ 5 +𝐢

12 WB D4 Find βˆ’ 3 /4 3 /4 1 3βˆ’4 π‘₯ 2 𝑑π‘₯ π‘Ž 2 = 3 4 βˆ’ 3 /4 3 /4 1 3βˆ’4 π‘₯ 2 𝑑π‘₯
1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 = 3 4 βˆ’ 3 /4 3 / βˆ’4 π‘₯ 2 𝑑π‘₯ = βˆ’ 3 /4 3 / βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ /4 βˆ’ 3 /4 = arcsin βˆ’ arcsin βˆ’ 1 2 = πœ‹ 6

13 NOW DO EX 3D WB D5 Find π‘₯+4 1βˆ’4 π‘₯ 2 𝑑π‘₯ π‘Ž 2 = 1 4
1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯= arcsin π‘₯ π‘Ž +𝐢 1 π‘Ž 2 + π‘₯ 2 𝑑π‘₯= 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 π‘Ž 2 = 1 4 π‘₯+4 1βˆ’4 π‘₯ 2 = π‘₯ 1βˆ’4 π‘₯ βˆ’4 π‘₯ 2 π‘₯ 1βˆ’4 π‘₯ 2 𝑑π‘₯ =βˆ’ 𝑒 𝑑𝑒 𝑒=1βˆ’4 π‘₯ 2 𝑑𝑒=8π‘₯ 𝑑π‘₯ =βˆ’ 1 4 𝑒 𝐢 = βˆ’ βˆ’4 π‘₯ 2 +𝐢 βˆ’4 π‘₯ 2 𝑑π‘₯ = βˆ’ π‘₯ 2 𝑑π‘₯ =2 arcsin 2π‘₯ +𝐢 π‘₯+4 1βˆ’4 π‘₯ 𝑑π‘₯=βˆ’ βˆ’4 π‘₯ arcsin 2π‘₯ +C NOW DO EX 3D

14 One thing to improve is –
KUS objectives BAT differentiate and integrate inverse trig functions using techniques from A2 self-assess One thing learned is – One thing to improve is –

15 END


Download ppt "Methods in calculus."

Similar presentations


Ads by Google