Download presentation
Presentation is loading. Please wait.
Published byHarjanti Tedjo Modified over 5 years ago
1
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E Find the stationing at point B. [pause] In this problem, --- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
2
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E Curve 1, and Curve 2 are --- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
3
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E connected at point D to create --- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
4
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E a reverse curve, where the radius of the two curves are equal. STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
5
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E The interior angles of the two curves are provided, ---- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
6
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E as well as the lengths of segments AC and CE. The stationing at point A equals ---- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
7
Find: STAB I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2
o I1=90 C 2,500 [ft] 2,000 [ft] B D A curve 1 R1=R2 F curve 2 E To find the stationing at point B, --- STAA=5+00 o I2=45 15+86 16+58 C) 17+31 D) 18+23
8
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E we’ll add the the length of segment AB to the stationing at point A. The problem statement provides the --- I2
9
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E the length of segment AB equals ---- I2
10
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E the length of segment AC minus the length of segment BC. Length segment AC is given as --- I2 LAB=LAC-LBC
11
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E 2,500 feet, and the length of BC is equal to the --- I2 LAB=LAC-LBC
12
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E tangent distance of curve 1, T1, which equals the radius of curve 1 times --- I2 LAB=LAC-LBC T1=R1*tan(0.5*I1)
13
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E the tangent of one half times the interior angle of curve 1. The problem states the interior angle of --- I2 LAB=LAC-LBC T1=R1*tan(0.5*I1)
14
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E curve 1 equals 90 degrees, and the radius of curve 1 equals ---- I2 LAB=LAC-LBC T1=R1*tan(0.5*I1)
15
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2 I1=90 B
o B I1=90 D o I2=45 A F STAB=STAA+LAB E the radius of curve 2. For now, we’ll designate both radius 1 and radius 2 as --- I2 LAB=LAC-LBC T1=R1*tan(0.5*I1)
16
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2=R I1=90
o B I1=90 D o I2=45 A F STAB=STAA+LAB E R. [pause] Now our equation for T1 simplifies to ---- I2 LAB=LAC-LBC T1=R1*tan(0.5*I1)
17
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2=R B
o B I1=90 D o I2=45 A o T1=R*tan(0.5*90 ) F E R times the tangent of 0.5 times 90 degrees, which simplifies to --- I2 T1=R1*tan(0.5*I1)
18
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2=R B
o B I1=90 D o I2=45 A o T1=R*tan(0.5*90 ) F E R. [pause] From the problem statement, we notice the length of segment --- T1=R I2 T1=R1*tan(0.5*I1)
19
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] I1 C STAA=5+00 R1=R2=R B
o B I1=90 D o I2=45 A o T1=R*tan(0.5*90 ) F E CE equals 2,000 feet, which is equivalent to the sum of the --- T1=R I2 T1=R1*tan(0.5*I1)
20
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E tangent distances T1 and T2. T2 equals R2 times ---- T1=R I2 T1=R1*tan(0.5*I1)
21
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E the tangent of one half the interior angle of curve 2. After substituting in the appropriate values for ---- T1=R I2 T2=R2*tan(0.5*I2)
22
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E R2 and I2, the tangent distance for curve 2 equals --- T1=R I2 T2=R2*tan(0.5*I2)
23
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E 0.414 times the radius. From the diagram, we know the length of CE equals --- T1=R I2 T2=R2*tan(0.5*I2) T2=0.414*R
24
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E T1 plus T2. After substituting in T1, T2 and the length of segment CE, --- T1=R T2=R2*tan(0.5*I2) LCE=T1+T2 T2=0.414*R
25
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E the radii of both curves, R1 and R2 equal, --- T1=R T2=R2*tan(0.5*I2) LCE=T1+T2 T2=0.414*R
26
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E 1,414 feet. [pause] Therefore, the tangent distance of curve 1 equals --- T1=R T2=R2*tan(0.5*I2) LCE=T1+T2 T2=0.414*R 2,000 [ft]=R+0.414*R R=1,414 [ft]
27
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 o T1=R*tan(0.5*90 ) F E 1,414 feet. Now we can determine the length of segment AB by --- T1=R T1=1,414 [ft] LCE=T1+T2 2,000 [ft]=R+0.414*R R=1,414 [ft]
28
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E subtracting this value of 1,414 feet from ---- LCE=T1+T2 2,000 [ft]=R+0.414*R R=1,414 [ft]
29
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E the length of segment AC, which was given as ---- LAB=LAC-LBC LCE=T1+T2 2,000 [ft]=R+0.414*R R=1,414 [ft]
30
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E 2,500 feet. This makes the length of segment AB equal to, --- LAB=LAC-LBC LCE=T1+T2 2,000 [ft]=R+0.414*R R=1,414 [ft]
31
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E 1,086 feet. The stationing at point B equals --- LAB=LAC-LBC LCE=T1+T2 LAB=1,086 [ft] 2,000 [ft]=R+0.414*R R=1,414 [ft]
32
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E the stationing at point A, plus the length of segment AB. After substituting in --- LAB=LAC-LBC STAB=STAA+LAB LAB=1,086 [ft]
33
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E these two variables, the stationing at point B equals ---- LAB=LAC-LBC STAB=STAA+LAB LAB=1,086 [ft]
34
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 T1=1,414 [ft] F E 1,586 feet. [pause] LAB=LAC-LBC STAB=STAA+LAB LAB=1,086 [ft] STAB=15+86
35
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 15+86 16+58 C) 17+31 D) 18+23 F E When reviewing the possible solutions, ---- STAB=STAA+LAB STAB=15+86
36
Find: STAB LCE=2,000 [ft] LAC=2,500 [ft] C STAA=5+00 T1 R1=R2=R LCE B
o B I1=90 o D I2=45 A T2 15+86 16+58 C) 17+31 D) 18+23 F E the answer is A STAB=STAA+LAB STAB=15+86 AnswerA
37
? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1
Find: σ’v at d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.