Download presentation
Presentation is loading. Please wait.
Published byRonald Farmer Modified over 6 years ago
1
Constraint Handling Rules (CHR): Rule-Based Constraint Solving and Deduction
Jacques Robin
2
Outline Constraint Handling Rules (CHR) CHR with disjunction (CHR)
Key ideas Introductory example CHR constraint solver over real variables CHR with disjunction (CHR) CHR constraint solver over finite domain variables General purpose rule-based reasoning with CHR A taxonomy of rule-based languages Production rules and ECA rules in CHR Conditional term rewrite rules in CHR Prolog and CLP rules in CHR Deduction with CHR Propositional deduction as Boolean constraint solving in CHR First-order Horn Logic forward chaining with CHR First-order Horn Logic backward chaining with CHR First-order logic refutation and resolution based entailment with CHR Description logic reasoning with CHR
3
Constraint Handling Rules (CHR): Key Ideas
Originally a logical rule-based language to declaratively program specialized constraint solvers on top of a host programming language (Prolog, Haskell, Java) Since evolved in a general purpose first-order knowledge representation language and Turing-complete programming language Fact base contains both extensional and intentional knowledge in the form of a conjunction of constraints Rule base integrates and generalizes: Event-Condition-Action rules (themselves generalizing production rules) for constraint propagation Conditional rewrite rules for constraint simplification Relies on forward chaining and rule Left-Hand-Side (LHS) matching Extended variant CHRV adds backtracking search and thus generalizes Prolog rules as well
4
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y. % Constraint simplification (or rewriting) rules % Syntax: <simplifiedHead> <=> <guard> | <body> % Logically: Xvars(head guard) % <guard> (<head> Yvars(body - (head guard)) <body>) % Operationally: substitute in constraint store (knowledge base) constraints that match % the rule simplified head by those in rule body with their variables instantiated from % the match X Y , Y Z ==> X Z. % Constraint propagation (or production) rule (in this case, unguarded) % Syntax: <propagatedHead> ==> guard | <body> % <guard> (<head> Yvars(body - (head guard)) <body>) % Operationally: if constraint store (knowledge base) contains constraints that match % the rule propagated head then add those in rule body to the store with their variables % instantiated from the match
5
CHR by Example: Rule Base Defining in Terms of =
X Y \ X Y <=> true. % Constraint simpagation rule (in this case, unguarded) % Syntax: <propagatedHead> \ <simplifiedHead> <=> guard | <body> % Logically: Xvars((head guard) <guard> (<propagatedhead> <simplifiedHead> % Yvars(body - (head guard)) <body> <propagatedhead>) % Operationally: if constraint store (knowledge base) contains constraints that match % the rule simplified head and the rule propagated head, then substitute in the store % those matching the simplified head by the rule body with their variables instantiated % from the match query1: A B, C A, B C, A = 2 % Initial constraint store: a constraint conjunction answer1: A = 2, B = 2, C = 2, % Final constraint store = initial constraint store % simplified through repeated rule application until no rule neither simplifies nor % propagates any new constraint query2: A B, B C, C A answer2: A = B, B = C
6
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG A B, C A, B C A = 2 Rule-Defined Constraint Store Built-In Constraint Store Matching Equations Guard
7
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Condition for firing a rule: Rule head matches active constraint in RDCS Generates set of equations between variables and constants from the head and the constraint (inserted to MEG) Every other head from the rule matches against some other (partner) constraint in the RDCS Generates another set of equations (inserted to MEG) Rule r fires iff: X1,...,Xi vars(MEG BICS - r) BICS Y1,...,Yj vars(r) MEG Rule RDCS BICS MEG r? A B, C A, B C A = 2 X' = A, Y' = B, X' = Y' Active Constraint
8
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG r? A B, C A, B C A = 2 X' = A = Y' = B Active Constraint Normalizing Simplification
9
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true (A,B A = 2 X',Y' X' = A = Y' = B), eg, B = 3 2 = A X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG r? A B, C A, B C A = 2 X' = A = Y' = B Active Constraint
10
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule firing order depends on 3 heuristics, with the following priority: Rule-defined constraint ordering to become active Rule ordering to try matching and entailment check with active constraint Rule-defined constraint ordering to become partner constraints Engine first tries matching and entailment check: All rules with current active constraint, before trying any rule with the next constraint in the RDCS; For all elements of the RDCS as partner for the first multi-headed rule that matches the active constraint, before trying the next rule that matches the active constraint; Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = A, Y' = B, Y' = C, X' = A Active Constraint Partner Constraint
11
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y ( A,B,C A = 2 X',Y' X' = A Y' = B = C), eg, B = 3 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = A, Y' = B = C Active Constraint Partner Constraint
12
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = C, Y' = A, Y' = A, X' = B Active Constraint Partner Constraint
13
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = B = C Y' = A), eg, B = 3 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = B = C, Y' = A Active Constraint Partner Constraint
14
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = A, Y' = B, Y' = B, X' = C Active Constraint Partner Constraint
15
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = A = C Y' = B), eg, C = 3 2 = A X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = A = C, Y' = B Active Constraint Partner Constraint
16
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = B, Y' = C, Y' = A, X' = B Active Constraint Partner Constraint
17
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = B Y' = A = C), eg, C = 3 2 = A X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG a? A B, C A, B C A = 2 X' = B, Y' = A = C Active Constraint Partner Constraint
18
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t? A B, C A, B C A = 2 X' = A, Y' = B, Y' = C, Z' = A Active Constraint Partner Constraint
19
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z (A,B,C A = 2 X',Y', Z' X' = Z' = A Y' = B = C), eg, B = 3 4 = C X Y \ X Y <=> true. Rule RDCS BICS MEG t? A B, C A, B C A = 2 X' = Z' = A, Y' = B = C Active Constraint Partner Constraint
20
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t? A B, C A, B C A = 2 X' = C, Y' = A, Y' = A, Z' = B Active Constraint Partner Constraint
21
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z A,B,C A = 2 X',Y',Z' X' = C Y' = A Z' = B, e.g., X'=C,Y'=2,Z'=B X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t? A B, C A, B C A = 2 X' = C, Y' = A, Z' = B Active Constraint Partner Constraint
22
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B
23
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. For a given active constraint: a matching multi-headed propagation rule is reapplied with all matching partner constraints, before any other rule is tried; in contrast, a matching multi-headed simplification or simpagation rule is applied only once with the first matching partner constraint, and then engine moves on to the next rule Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B t? A B, C A, B C, C B X' = A, Y' = B, Y' = B, Z' = C Active Constraint Partner Constraint
24
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z A,B,C A = 2 X',Y',Z' X' = A Y' = B Z' = B, e.g., X'=A,Y'=B, Z'=C X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B t? A B, C A, B C, C B X' = A, Y' = B, Z' = C Active Constraint Partner Constraint
25
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C A B, C A, B C, C B, A C
26
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Attempt to reapply same propagation rule matching same pair of active and partner constraints with same head pair but swapped assignments: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = B, Y' = C, Y' = A, Z' = B Active Constraint Partner Constraint
27
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. (A,B,C A = 2 X',Y', Z' X' = Z' = B Y' = A = C), eg, A = 2 4 = C X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = Z' = B, Y' = A = C Active Constraint Partner Constraint
28
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = A, Y' = B, Y' = C, Z' = B Active Constraint Partner Constraint
29
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z (A,B,C A = 2 X',Y', Z' X' = A Y' = Z' = B = C), eg, B = 3 4 = C X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = A, Y' = Z' = B = C Active Constraint Partner Constraint
30
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = C, Y' = B, Y' = A, Z' = B Active Constraint Partner Constraint
31
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z (A,B,C A = 2 X',Y', Z' X' = C Y' = Z' = A = B), eg, A = 2 3 = B X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = C, Y' = Z' = A = B Active Constraint Partner Constraint
32
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = A, Y' = B, Y' = A, Z' = C Active Constraint Partner Constraint
33
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z (A,B,C A = 2 X',Y', Z' X' = Y' = A = B Z' = C ), eg, A = 2 3 = B X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = Y' = A = B, Z' = C Active Constraint Partner Constraint
34
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = A, Y' = C, Y' = A, Z' = B Active Constraint Partner Constraint
35
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z (A,B,C A = 2 X',Y', Z' X' = Y' = A = C Z' = B ), eg, A = 2 4 = C X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C t? A B, C A, B C, C B, A C X' = Y' = A = C, Z' = B Active Constraint Partner Constraint
36
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y' = B, X' = C, Y' = A Active Constraint Partner Constraint
37
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true (A,B,C A = 2 X',Y', Z' X' = Y' = Z' = A = B = C ), eg, A = 2 4 = C Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = Y' = A = B = C Active Constraint Partner Constraint
38
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = C, Y' = A, X' = A, Y' = B Active Constraint Partner Constraint
39
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. (A,B,C A = 2 X',Y', Z' X' = Y' = Z' = A = B = C ), eg, A = 2 4 = C Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = Y' = A = B = C Active Constraint Partner Constraint
40
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y’ = B, X’ = B, Y’ = C Active Constraint Partner Constraint
41
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true (A,B,C A = 2 X',Y‘ X' = Y' = A = B = C ), eg, A = 2 4 = C Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A = B = Y’ = C Active Constraint Partner Constraint
42
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = B, Y' = C, X’ = A, Y’ = B Active Constraint Partner Constraint
43
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. (A,B,C A = 2 X',Y' X' = Y' = A = B = C ), eg, A = 2 4 = C Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = Y' = A = B = C Active Constraint Partner Constraint
44
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y’ = B, X’ =C, Y’ = B Active Constraint Partner Constraint
45
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true (A,B,C A = 2 X',Y‘ X' = A = C, Y’ = B), eg, A = 2 4 = C Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A = C, Y’ = B Active Constraint Partner Constraint
46
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = C, Y' = B, X’ = A, Y’ = B Active Constraint Partner Constraint
47
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. (A,B,C A = 2 X',Y' X' = A = C,Y’ = B ), eg, A = 2 4 = C Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A = C, Y' = B Active Constraint Partner Constraint
48
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y’ = B, X’ =A, Y’ = C Active Constraint Partner Constraint
49
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true (A,B,C A = 2 X',Y‘ X' = A, Y’ = B = C), eg, B = 3 4 = C Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y’ = B = C Active Constraint Partner Constraint
50
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y' = C, X’ = A, Y’ = B Active Constraint Partner Constraint
51
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. (A,B,C A = 2 X',Y' X' = A, Y’ = B = C), eg, B = 3 4 = C Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C i? A B, C A, B C, C B, A C X' = A, Y' = B = C Active Constraint Partner Constraint
52
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Heuristic to choose next active constraint after processing of active constraint A added to the store constraints N1, ... Nn N1, ... , Nn in order Constraints O1, ... , Om present in the store before processing A Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r? A B, C A, B C, C B, A C X' = C, Y' = B, X' = Y' Active Constraint
53
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true (A,B,C A = 2 X',Y' X' = Y' = B = C ), eg, B = 3 4 = C X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r? A B, C A, B C, C B, A C X' = Y' = B = C Active Constraint
54
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = C, Y' = B, Y' = A, X' = B, Partner Constraint Active Constraint
55
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = Y' = A = B = C), eg, B = 3 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = Y' = A = C = B Partner Constraint Active Constraint
56
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C Y' = C, X' = B, X' = A, Y' = B Partner Constraint Active Constraint
57
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = A = C Y' = B), eg, A = 2 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = A = C, Y' = B Partner Constraint Active Constraint
58
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = C, Y' = B, Y’ = C, X’ = A Partner Constraint Active Constraint
59
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y' X' = Y' = A = B = C), eg, A = 2 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = Y’ = A, = B = C Partner Constraint Active Constraint
60
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C Y’ = C, X’ = B, X’ = C, Y’ = A Partner Constraint Active Constraint
61
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2 X',Y’ X' = Y' = A = B = C), eg, A = 2 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X’ = Y’ = A = B = C Partner Constraint Active Constraint
62
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = C, Y' = B, Y’ = B, X’ = C Partner Constraint Active Constraint
63
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y A,B,C A = 2 X',Y' X' = C’ Y’ = B), eg, A = 2, X’ = C, Y’ = B X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a? A B, C A, B C, C B, A C X' = C, Y' = B Partner Constraint Active Constraint
64
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y A,B,C A = 2 X',Y' X' = C’ Y’ = B), eg, A = 2, X’ = C, Y’ = B X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C a! A B, C A, B C, C B, A C X' = C, Y' = B A B, C A, A C A = 2, B = C
65
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B r? A B, C A, A C A = 2, B = C X’ = A, Y’ = C, X’ = Y’ Active Constraint
66
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true (A,B,C A = 2, B = C X',Y’ X' = Y' = A = B = C), eg, A = 2 4 = C X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B r? A B, C A, A C A = 2, B = C X’ = Y’ = A = C Active Constraint
67
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C X’ = A, Y’ = C, Y’ = A, X’ = B Partner Constraint Active Constraint
68
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2, B = C X',Y’ X' = Y' = A = B = C), eg, A = 2 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C X’ = Y’ = A = B = C Partner Constraint Active Constraint
69
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Alternate matching combination: Active constraint matched against rightmost head Partner constraint matched against leftmost head Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C Y’ = A, X’ = C, X’ = A, Y’ = B Partner Constraint Active Constraint
70
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y (A,B,C A = 2, B = C X',Y’ X' = Y' = A = B = C), eg, A = 2 4 = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C X’ = Y’ = A = B = C Partner Constraint Active Constraint
71
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C X’ = A, Y’ = C, Y’ = C, X’ = A Partner Constraint Active Constraint
72
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y A,B,C A = 2, B = C X',Y’ X' = A Y’ = C), eg, X’ = 2, Y’ = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a? A B, C A, A C A = 2, B = C X’ = Y’ = A = C Partner Constraint Active Constraint
73
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y A,B,C A = 2, B = C X',Y’ X' = A Y’ = C), eg, X’ = 2, Y’ = C X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a! A B, C A, A C A = 2, B = C X’ = Y’ = A = C A B A = 2, B = C, A = C
74
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true. X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a! A B, C A, A C A = 2, B = C X’ = Y’ = A = C r? A B A = B = C = 2 X’ = A, Y’ = B, X’ = Y’ Active Constraint
75
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true A,B,C A = B = C = 2 X',Y’ X' = Y’ = A = B), eg, X’ = 2, Y’ = 2 X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a! A B, C A, A C A = 2, B = C X’ = Y’ = A = C r? A B A = B = C = 2 X’ = Y’ = A = B Active Constraint
76
CHR by Example: Rule Base Defining in Terms of =
X Y <=> X = Y | true A,B,C A = B = C = 2 X',Y’ X' = Y’ = A = B), eg, X’ = 2, Y’ = 2 X Y, Y X <=> X=Y X Y, Y Z ==> X Z. X Y \ X Y <=> true. Rule RDCS BICS MEG t! A B, C A, B C A = 2 X' = C, Y' = A, Z' = B A B, C A, B C, C B X' = A, Y' = B, Z' = C r! A B, C A, B C, C B, A C X' = C, Y' = B a! A B, C A, A C A = 2, B = C X’ = Y’ = A = C A B A = B = C = 2 X’ = Y’ = A = B Constraints Simplified Final Normalized Solved Form
77
{non-overlapping, complete}
CHR: Syntax Overview guard simplified head propagated head body Logical Formula 0..1 * CHR Rule 2..* And Formula CHR Base Simpagation Rule Simplification Propagation {non-overlapping, complete} Atomic Formula Built-In Constraint Rule Defined Simplification rule: sh1(X,a), sh2(b,Y) <=> g1(X,Y), g2(a,b,c) | b1(X,c), b2(Y,c). Propagation rule: ph1(X,Y), ph2(d) ==> g3(X), g4(d,Y) | b3(X,d), b4(X,Y). Simpagation rule: ph3(X), ph4(Y,Z) \ sh3(X,U), sh4(Y,V) <=> g5(X,Z), g6(Z,Y) | b5(X), b6(Y,Z). Simplification rules are conditional rewrite rules (condition is the guard) Propagation rules are event-condition-action rules (event is the guard) Simpagation rules heads are hybrid syntactic sugar, each can be replaced by a semantically equivalent simplification rule, ex, p, r \ s, t <=> g, h | b, c. is equivalent to p, r, s, t <=> g, h | p, r, b, c. Head: Rule-Defined Constraints Guard: Built-In Constraints (from host language) Body: Rule-Defined and Built-In Constraints
78
CHR: Complete Abstract Syntax
body guard 0..1 CHR Rule Logical Formula 2..* CHR Base * simplified head 0..1 And Formula propagated head 0..1 {non-overlapping, complete} Constraint Domain * arg * Term Constraint Symbol Atomic Formula Simplification Rule Simpagation Rule Propagation Rule Built-In Constraint Rule Defined true false Rule Defined Constraint Symbol Built-In arg * Non-Ground Term Ground {non-overlapping, complete} Functional Term Non-Functional {non-overlapping, complete} Variable Constant Symbol Function Symbol
79
CHR: Derivation Data Structures
body guard 0..1 CHR Rule CHR Logical Formula 2..* CHR Base * simplified head 0..1 And Formula * {ordered} Rule Defined Constraint Store Built-In Used Rule Derivation State CHR propagated head 0..1 arg Atomic Formula * Simplification Rule Simpagation Rule Propagation Rule Term Built-In Constraint Rule Defined Constraint
80
CHR: Declarative Semantics in Classical First-Order Logic (CFOL)
Simplification rule: sh1, ... , shi <=> g1, ..., gj | b1, ..., bk. where: {X1, ..., Xn} = vars(sh1 ... shi g1 ... gj) and {Y1, ... , Ym} = vars(b1 ... bk) \ {X1, ..., Xn} X1, ..., Xn g1 ... gj (sh1 ... shi Y1, ... , Ym b1 ... bk) Propagation rule: ph1, ... , phi ==> g1, ..., gj | b1, ..., bk. where: {X1, ..., Xn} = vars(ph1 ... phi g1 ... gj) and {Y1, ... , Ym} = vars(b1 ... bk) \ {X1, ..., Xn} X1, ..., Xn g1 ... gj (ph1 ... phi Y1, ... , Ym b1 ... bk)
81
CHR: Constraint and Rule Priority Heuristics
No standard, implementation dependent Active constraint priority heuristics: Preferring constraints most recently inserted in store Left-to-right writing order in query Rule priority heuristics: Preferring simplification rules over simpagation rules and simpagation over propagation rules Preferring simplification and simpagation rules with highest number of heads Preferring propagation rules with lowest number of heads Preferring rules whose head constraint have never be matched yet Top to bottom writing order Partner constraint priority heuristics:
82
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | X = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG min(1,2,M)
83
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X M true |= X'=1,Y'=2,Z'=M X' = 1, Y' = 2, Z' = M, 1 2 min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r? min(1,2,M) true X' = 1, Y' = 2, Z' = M, X' Y'
84
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X M true |= X'=1,Y'=2,Z'=M X' = 1, Y' = 2, Z' = M, X' = 1 2 = Y' min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r! min(1,2,M) true X' = 1, Y' = 2, Z' = M, X' Y' M = Z' = X' = 1
85
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X M true |= X'=1,Y'=2,Z'=M X' = 1, Y' = 2, Z' = M, X' = 1 2 = Y' min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r! min(1,2,M) true X' = 1, Y' = 2, Z' = M, X' Y' M = 1 Projection(CS,vars(Query))
86
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG min(A,B,M) A B
87
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X A,B,M A B |= X'=A,Y'=B,Z'=M X' = A, Y' = B, Z' = M, X' = A B = Y' min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r1? min(A,B,M) A B X' = A, Y' = B, Z' = M, X' Y'
88
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X A,B,M A B |= X'=A,Y'=B,Z'=M X' = A, Y' = B, Z' = M, X' = A B = Y' min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r1! min(A,B,M) A B X' = A, Y' = B, Z' = M, X' Y' true M = Z' = X' = A, A B
89
CHR Base Example: Defining min in Terms of , and =
min(X,Y,Z) <=> X Y | Z = X A,B,M A B |= X'=A,Y'=B,Z'=M X' = A, Y' = B, Z' = M, X' = A B = Y' min(X,Y,Z) <=> Y X | Z = Y. min(X,Y,Z) <=> Z < X | Y = Z. min(X,Y,Z) <=> Z < Y | Y = Z. min(X,Y,Z) ==> Z X, Z Y. Rule RDCS BICS MEG r1! min(A,B,M) A B X' = A, Y' = B, Z' = M, X' Y' true M = A, A B Projection(CS,vars(Query))
90
CHR Bases as Component Several solvers, each one implemented by a pair (CHR base, CHR engine) can be assembled in a component-based architecture, with server solvers' CHR bases defining in their rule heads the constraints used as built-ins by client solvers' CHR bases
91
Example CHR Base Component Assembly
min(X,Y,Z) X Y | Z = X min(X,Y,Z) Z Y | Z = X min(X,Y,Z) Y Z | Z = Y min(X,Y,Z) Z X | Z = Y min(X,Y,Z) Z X Z Y <<Component>> MinCHRDBase <<Component>> CHRDEngine <<Interface>> Min min(X:Real, Y:Real, Z:Real) <<Interface>> CHRDEngine derive() «uses» «uses» <<Interface>> EqNeq = (X:Real, Y:Real): Boolean (X:Real, Y:Real): Boolean <<Interface>> LoeStl (X:Real, Y:Real): Boolean (X:Real, Y:Real): Boolean «uses» X Y X = Y | true X Y Y X X = Y X Y Y Z X Z X Y \ X Y true X X false X Y Y Z X Y Y Z | X Z Y Z X Y X Y Y Z | X Z X Y Y Z X Y Y Z | X Z <<Component>> LoeStlCHRDBase <<Component>> HostPlatform
92
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C. ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Notation: ?P Constraint Domain Variable and CHR Variable C Constraint Domain Constant and CHR Variable == Constraint Domain Equality Predicate = CHR Equality Predicate 0,1,2, ... CHR and Host Programming Language Constants := Host Programming Language Variable Assignment Predicate, always returns true, performs arithmetic computation as side-effect +, -, / Host Programming Language Arithmetic Function number Host Programming Language Type Checking Function Rule RDCS BICS MEG ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true
93
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?Y, true |= ?P=?Y,C=2 ?P = ?Y, C = 2 ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1? ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2
94
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 ?Y = 2
95
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r1? ?Y = 2 Why r1 does not apply?
96
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?X,?Y,?U,?V ?Y = 2 |= <?P,?Q,C,R> = <?X,2,3,1> ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2? ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1
97
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?X,?Y ?Y = 2 |= <?P,?Q,C,R> = <?X,2,3,1> ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 ?Y = 2, ?X = 1
98
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r1? ?Y = 2, ?X = 1
99
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r2? ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 2, ?Q.number
100
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r3? ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 2, ?P.number
101
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4? ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, ?P = ?U, ?Q = ?V, D = 2, R = 1
102
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R ?X,?Y,?U,?V ?X = 1, ?Y = 2 |= <?P,?Q,C,D,R> = <?U,?V,0,2,1> ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4? ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1
103
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. ?X,?Y,?U,?V ?X = 1, ?Y = 2 |= <?P,?Q,C,D,R> = <?U,?V,0,2,1> ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4! ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 ?Y = 2, ?X = 1, ?U = 1
104
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4! ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 r1? ?Y = 2, ?X = 1, ?U = 1
105
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4! ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 r2? ?Y = 2, ?X = 1, ?U = 1 ?P = ?U, ?Q = ?V, C = 0, ?Q.number
106
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?X,?Y,?U,?V ?X = 1, ?Y = 2, ?U = 1 |= <?P,?Q,C,R> = <1,?V,0,-1> ?P = ?U, ?Q = ?V, C = 0, ?P.number, R = -1 ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4! ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 r3? ?Y = 2, ?X = 1, ?U = 1 ?P = ?U, ?Q = ?V, C = 0, ?P.number, R = -1
107
CHR Base Example: Restricted Form of Real Linear Equations Solver
?P == C <=> P = C ?P + ?Q == C <=> ?Q.number, R := C - ?Q | ?P = R. ?P + ?Q == C <=> ?P.number, R := C - ?P | ?Q = R. ?X,?Y,?U,?V ?X = 1, ?Y = 2, ?U = 1 |= <?P,?Q,C,R> = <1,?V,0,-1> ?P = ?U, ?Q = ?V, C = 0, ?P.number, R = -1 ?P + ?Q == C \ ?P - ?Q == D <=> R := (C + D) / 2 | ?P = R. Rule RDCS BICS MEG r1! ?Y == 2, ?X + ?Y == 3, ?U - ?V == 2, ?U + ?V == 0 true ?P = ?Y, C = 2 r2! ?Y = 2 ?P = ?X, ?Q = ?Y, C = 3, ?Q.number, R = 1 r4! ?Y = 2, ?X = 1 ?P = ?U, ?Q = ?V, C = 0, D = 2, R = 1 r3! ?U + ?V == 2 ?Y = 2, ?X = 1, ?U = 1 ?P = ?U, ?Q = ?V, C = 0, ?P.number, R = -1 ?Y = 2, ?X = 1, ?U = 1, ?V = -1
108
connective: enum{or,and}
CHR : Abstract Syntax body OrAnd Formula connective: enum{or,and} 2..* guard 0..1 CHR Rule And Formula CHR Base * simplified head Tried Alternative Body 0..1 propagated head 0..1 * Atomic Formula Fired Rule Simplification Rule Simpagation Rule Propagation Rule Constraint * {ordered} Derivation State CHR Derivation Rule Defined Constraint Store * Rule Defined Constraint * Built-In Constraint * Built-In Constraint Store * * true false
109
CHR: Declarative Semantics in Classical First-Order Logic (CFOL)
Simplification rule: sh1, ... , shi <=> g1, ..., gj | b11, ..., bkp ; ... ; b11, ..., blq. where: {X1, ..., Xn} = vars(sh1 ... shi g1 ... gj) and {Y1, ... , Ym} = vars(b1 ... bk) \ {X1, ..., Xn} X1, ..., Xn g1 ... gj (sh1 ... shi Y1, ... , Ym ((b11 ... bkp) ... (b11 ... bkq)) Propagation rule: ph1, ... , phi ==> g1, ..., gj | b11, ..., bkp ; ... ; b11, ..., blq. where: {X1, ..., Xn} = vars(ph1 ... phi g1 ... gj) and {Y1, ... , Ym} = vars(b1 ... bk) \ {X1, ..., Xn} X1, ..., Xn g1 ... gj (ph1 ... phi Y1, ... , Ym ((b11 ... bkp) ... (b11 ... bkq))
110
CHR: Operational Semantics
When rule R with disjunctive body B1 ; ... ; Bk is fired Update both constraint stores using B1 Start next matching-updating cycle When BICS = false or when no rule matches the RDCS Backtrack to last alternative body Bi Restore both constraint stores to their states prior to their update with Bi Update both constraint stores using Bi+1 Exhaustively try all alternative bodies of all fired rules through backtracking
111
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). d(r4,C) ==> (C = r ; C = b). d(r3,C) ==> (C = r ; C = b). d(r2,C) ==> (C = b ; C = g). d(r5,C) ==> (C = r ; C = g). d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]). true
112
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m? m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]). true
113
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7)
114
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2? l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6]
115
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6])
116
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] n? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6])
117
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1
118
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r
119
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 n? C1 = r
120
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 d1a? C1 = r R = r1, C = C1 Already fired w/ same constraint. Not repeated to avoid trivial non-termination
121
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 l2? C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6]
122
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6])
123
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false C1,C7 Ri',Rj',Ci',Cj' C1=r | Ri=r1, Rj=r7, Ci=C1, Cj=C7, Ci=Cj l([ ],[ ]) <=> true eg., C1 = b r = C7 l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] n? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r1, Rj = r7, Ci = C1, Cj = C7, Ci = Cj
124
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7a? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7
125
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 C1 = r, C7 = r
126
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 n? C1 = r, C7 = r Ri = r1, Rj = r7, Ci = r, Cj = r
127
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 n! C1 = r, C7 = r Ri = r1, Rj = r7, Ci = r, Cj = r false
128
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 n! C1 = r, C7 = r Ri = r1, Rj = r7, Ci = r, Cj = r bt false
129
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7
130
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 C1 = r, C7 = b
131
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false C1,C7 Ri',Rj',Ci',Cj' C1=r | Ri=r1, Rj=r7, Ci=C1, Cj=C7, Ci=Cj l([ ],[ ]) <=> true eg., Cj = b r = Ci l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 n? C1 = r, C7 = b Ri = r1, Rj = r7, Ci = C1, Cj = C7, Ci = Cj
132
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 l2? C1 = r, C7 = b R = r4, Rs = [r3,r2,r5,r6], C = C4, Cs = [C3,C2,C5,C6]
133
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), d(r4,C4), l([r3,r2,r5,r6],[C3,C2,C5,C6]) C1 = r, C7 = b R = r4, Rs = [r3,r2,r5,r6], C = C4, Cs = [C3,C2,C5,C6]
134
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). ... m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m! m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), true l2! l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]), n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7) R = r1, Rs = [r7,r4,r3,r2,r5,r6], C = C1, Cs = [C7,C4,C3,C2,C5,C6] d1a! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), l([r7,r4,r3,r2,r5,r6],[C7,C4,C3,C2,C5,C6]) C = C1 C1 = r R = r7, Rs = [r4,r3,r2,r5,r6], C = C7, Cs = [C4,C3,C2,C5,C6] d7b! n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) Ri = r7, C = C7 l2? n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r7,C7), d(r4,C4), l([r4,r3,r2,r5,r6],[C4,C3,C2,C5,C6]) C1 = r, C7 = b
135
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 d(r1,C) ==> (C = r ; C = b ; C = g). d(r7,C) ==> (C = r ; C = b). d(r4,C) ==> (C = r ; C = b). d(r3,C) ==> (C = r ; C = b). d(r2,C) ==> (C = b ; C = g). d(r5,C) ==> (C = r ; C = g). d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs). Rule RDCS BICS MEG m, l([r1,r7,r4,r3,r2,r5,r6],[C1,C7,C4,C3,C2,C5,C6]). true n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7), d(r1,C1), d(r2,C2), d(r2,C2), d(r1,C3), d(r4,C4), d(r5,C5), d(r6,C6), d(r7,C7) C1 = g, C2 = b, C3 = r, C4 = r, C5 = g, C6 = r, C7 = b
136
CHR Base Example: Map Coloring Problem
t r3 r4 r5 r1 r7 % More efficient version with forward checking c(r1,r), c(r1,b), c(r1,g) ==> false. d(r1,C), c(r1,r), c(r1,b) ==> C = g. d(r1,C), c(r1,r), c(r1,g) ==> C = b. d(r1,C), c(r1,b), c(r1,g) ==> C = r. d(r1,C), c(r1,b) ==> (C = r ; C = g). d(r1,C), c(r1,g) ==> (C = r ; C = b). d(r1,C), c(r1,r) ==> (C = b ; C = g). d(r1,C) ==> (C = r ; C = b ; C = g). ... d(r6,C) ==> (C = r ; C = g; C = t). m <=> n(r1,r2), n(r1,r3), n(r1,r4), n(r1,r7), n(r2,r6), n(r3,r7), n(r4,r5), n(r4,r7), n(r5,r6), n(r5,r7). n(Ri,Rj), d(Rj,Cj) ==> c(Ri,Cj). n(Ri,Rj), d(Ri,Ci), d(Rj,Cj) ==> Ci = Cj | false. l([ ],[ ]) <=> true. l([R|Rs],[C|Cs]) <=> d(R,C), l(Rs,Cs).
137
Implementing a Rewriting System in CHR
Map each conditional rewrite system rule of the form Condition | LHS RHS onto a CHR simplification rule of the form LHS Condition | RHS i.e., map the rewrite rule condition onto the CHR guard the rewrite rule LHS onto the CHR head the rewrite rule RHS onto the CHR body Replace each functional terms ti appearing in a Condition, LHS or RHS of the rewrite rule by: a new variable Vi, and a new equational atom Vi = ti in the guard, head or body (respectively) of the CHR For example: fib(suc(suc(N)) plus(fib(suc(N)),fib(N)), becomes fib(U,V) <=> U = suc(W), W = suc(N) |fib(N,Y), fib(W,X), plus(X,Y,V).
138
Example Term Rewriting as CHR Solving:fibonacci
plus(X,0) X plus(X,suc(Y)) suc(plus(X,Y)) fib(0) suc(0) fib(suc(0)) suc(0) fib(suc(suc(N)) plus(fib(suc(N)),fib(N)) plus(X,U,V) <=> U = 0 | V = X. plus(X,U,V) <=> U = suc(Y) | V = suc(W), plus(X,Y,W). fib(U,V) <=> U = 0 | V = suc(0). fib(U,V) <=> U = suc(0) | V = suc(0). fib(U,V) <=> U = suc(W), W = suc(N) | fib(N,Y), fib(W,X), plus(X,Y,V).
139
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Rule RDCS BICS MEG f(s(s(0)),R) true
140
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Guard Entailment Condition: R true N1,U1,V1,W1 U1=s(s(0)) V1=R U1=s(W1) W1=s(N1), e.g., N1=0, U1=s(s(0)), V1=R, W1=s(0) Rule RDCS BICS MEG e? f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1)
141
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): U1=s(s(0)) U1=s(W1) W1=s(0) W1=s(0) W1=s(N1) N1=0 Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) f(N1,Y1), f(W1,X1), p(X1,Y1,V1)
142
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): U1=s(s(0)) U1=s(W1) W1=s(0) W1=s(0) W1=s(N1) N1=0 Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0)
143
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Guard Entailment Condition: R,N1,U1,V1,Y1,W1 R=V1 N1=0 U1=s(s(0)) W1=s(0) U2,V2 U2=N1 V2=Y1 U2=0, e.g., U2=0, V2=Y1 Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c? f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0
144
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): V2=Y1 V2=s(0) Y1=s(0) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0), U2=N1, V2=Y1, U2=0, V2=s(0)
145
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Guard Entailment Condition: R,N1,U1,V1,Y1,W1,U2,V2 R=V1 N1=U2=0 U1=s(s(0)) W1=Y1=V2=s(0) U3,V3 U3=W1 V3=X1 U3=s(0) e.g., U3=s(0), V3=X1 Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d? f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=W1, V3=X1, U3=s(0)
146
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): V3=X1 V3=s(0) X1=s(0) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=W1, V3=X1, U3=s(0) p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0)
147
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Guard Entailment Condition: R,N1,U1,V1,X1,Y1,W1,U2,V2,U3,V3 R=V1 N1=U2=0 U1=s(s(0)) W1=X1=Y1=V2=U3=V3=s(0) U4,V4,X4,Y4,W4 X4=X1 U4=Y1 V4=V1 U4=s(Y4) e.g., U4=s(0), V4=R, X4=s(0), Y4=0 Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b? p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=s(Y4)
148
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): U4=Y1 Y1=s(0) U4=s(0) U4=s(0) U4=s(Y4) Y4=0 X4=X1 X1=s(0) X4=s(0) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b! p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=s(Y4) p(X4,Y4,W4) R=V1=V4=s(W4), N1=U2=Y4=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=s(0)
149
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Guard Entailment Condition: R,N1,U1,V1,X1,Y1,W1,U2,V2,U3,V3,U4,V4,W4,X4,Y4, R=V1=V4=s(W4) N1=U2=Y4=0 ) U1=s(s(0)) ) W1=X1=Y1=V2=U3=V3=U4=X4=s(0) U5,V5,X5 X5=X4 U5=Y4 V5=W4 U5 = 0 e.g., U5=0, V5=W4, X5=s(0) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b! p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=Y4 a? p(X4,Y4,W4) R=V1=V4=s(W4), N1=U2=Y4=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=s(0) X5=X4, U5=Y4, V5=W4, U5 = 0
150
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): X5=X4 X4=s(0) X5=s(0) X5=s(0) V5=X5 V5=s(0) V5=s(0) V5=W4 W4=s(0) W4=s(0) R=s(W4) R=s(s(0)) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b! p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=Y4 a! p(X4,Y4,W4) R=V1=V4=s(W4), N1=U2=Y4=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=s(0) X5=X4, U5=Y4, V5=W4, U5 = 0 R=V1=V4=s(W4), N1=U2=Y4=U5=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=X5=s(0), V5=W4, V5=X5
151
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): X5=X4 X4=s(0) X5=s(0) X5=s(0) V5=X5 V5=s(0) V5=s(0) V5=W4 W4=s(0) W4=s(0) R=s(W4) R=s(s(0)) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b! p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=Y4 a! p(X4,Y4,W4) R=V1=V4=s(W4), N1=U2=Y4=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=s(0) X5=X4, U5=Y4, V5=W4, U5 = 0 R=V1=V4=s(s(0)), N1=U2=Y4=U5=0, U1=s(s(0)) W1=X1=Y1=V2=U3=V3=U4=X4=W4=V5=X5=s(0)
152
Example Term Rewriting as CHR Solving Solving: fibonacci(2) = ?
p(X,U,V) <=> U = 0 | V = X. p(X,U,V) <=> U = s(Y) | V = s(W), p(X,Y,W). f(U,V) <=> U = 0 | V = s(0). f(U,V) <=> U = s(0) | V = s(0). f(U,V) <=> U = s(W), W = s(N) | f(N,Y), f(W,X), p(X,Y,V). Built-in First-Order Atom Syntactic Equality Solver (Unification): X5=X4 X4=s(0) X5=s(0) X5=s(0) V5=X5 V5=s(0) V5=s(0) V5=W4 W4=s(0) W4=s(0) R=s(W4) R=s(s(0)) Rule RDCS BICS MEG e! f(s(s(0)),R) true U1=s(s(0)), V1=R, U1=s(W1), W1=s(N1) c! f(N1,Y1), f(W1,X1), p(X1,Y1,V1) R=V1, N1=0, U1=s(s(0)), W1=s(0) U2=N1, V2=Y1, U2=0 d! f(W1,X1), p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=Y1=V2=s(0) U3=Z1, V3=X1, U3=s(0) b! p(X1,Y1,V1) R=V1, N1=U2=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=s(0) X4=X1, U4=Y1, V4=V1, U4=Y4 a! p(X4,Y4,W4) R=V1=V4=s(W4), N1=U2=Y4=0, U1=s(s(0)), W1=X1=Y1=V2=U3=V3=U4=X4=s(0) X5=X4, U5=Y4, V5=W4, U5 = 0 R=s(s(0)) Projection(BICS, vars(Query))
153
CHRV vs. Rewriting Systems
Common characteristics: Forward chains rules Requires conflict resolution strategy to choose: Which of several matching rules to fire Non-monotonic reasoning due to: Constraint retraction in Rule-Defined Constraint Store Retraction of substituted sub-term Tricky confluence and termination issues CHRV: Matching applied to atomic formula conjunctions Rule head is matched with constraint store sub-set, which requires the head to be more general than the sub-set Propagation rules provide further simplification opportunities Rewriting Systems: Unification of LHS is applied recursively down to sub-terms Rule LHS is unified with sub-term which allows the sub-term to be more general than the LHS All reasoning done through rewriting (no propagation rules)
154
Implementing a Production System in CHR
Map each production rule of the form: IF m1 AND ... AND ml THEN a1 AND ... AND an where: {a1 ,..., an} = {add(n1) ,..., add(ni)} {delete(o1) ,..., delete(oj)} {hplOp1(p11,..., p1n) ,..., hplOpk(pk1,..., pkm)} onto a CHR simpagation rule of the form: p1,..., pr \ o1 ,..., oj hplOp1(p11, ..., p1n) ,..., hplOpk(pk1,..., pkm) | n1 ,..., ni. where {p1,..., pr} = {m1,..., ml} \ {o1 ,..., oj} Valid only when: {o1 , ... , oj} \ {m1, ... , ml} = , and C{hplOp1(p11,..., p1n),...,hplOpk(pk1,..., pkm)}, O{o1,...,oj}, N{n1,...,ni} C occurs before O and N in a1 and ... and an i.e., there no direct way in CHR to: delete facts (ground constraints) not matched in the rule head call host programming language operations after some matched facts have been deleted or add to the fact base (constraint store) two possibilities allowed in production systems that make the resulting rule base operational behavior hard to comprehend, verify and maintain
155
CHRV vs. Production Systems
Common characteristics: Forward chains rules Requires conflict resolution strategy to choose: Which of several matching rules to fire Non-monotonic reasoning due to: Constraint retraction in Rule-Defined Constraint Store Fact retraction in the RHS Tricky confluence and termination issues CHRV: Constraint store contains arbitrary atoms including functional, non-ground atoms Simplification rules allow straightforward modeling for goal-driven reasoning, with rewriting simulating Prolog-like backward chaining Disjunctive bodies Built-in backtracking search Production Systems: Fact base only contains ground Datalog atoms Cumbersome modeling to implement goal-driven reasoning No disjunctions in RHS No built-in search
156
Implementing a Prolog Program in CHR
Map Prolog fact base of the form {f fn.} onto a fact introduction CHR propagation rule: facts f1 ,..., fn. Map each set of Prolog deductive rules of the form {p(t11,...,tn1) :- b p(t1k,...,tnk) :- bk.} that provide the intentional part of the definition for predicate p onto a CHR simplification rule of the form p(X1,...,Xn) (X1=t11,..., Xn=tn1, b1) ;...; (X1=t1k ,..., Xn=tnk, bk). where {X1,...,Xn} is a set of fresh variables not occurring in {t11,...,tn1,b1, ... p(t1k,...,tnk), bk} Map each set of Prolog facts of the form {p(t'11,...,t'n1). ,..., p(t'1k,...,t'nk).} that provide the extensional part of the definition for predicate p onto a CHR world closure propagation rule of the form p(X1,...,Xn) (X1=t'11,..., Xn=t'n1) ;...; (X1=t'1k ,..., Xn=t'nk). Valid only for pure Prolog programs
157
Example Prolog Program Implemented in CHR
father(john,mary). father(john,peter). mother(jane,mary). person(john,male). person(peter,male). person(jane,female). person(mary,female). person(paul, male). parent(P,C) :- father(P,C). parent(P,C) :- mother(P,C). sibling(C1,C2) :- not C1 = C2, parent(P,C1), parent(P,C2). CHR Translation facts father(john,mary), father(john,peter), mother(jane,mary), person(john,male), person(peter,male), person(jane,female), person(mary,female), person(paul, male). parent(P,C) father(P,C) ; mother(P,C). sibling(C1,C2) C1 C2 | parent(P,C1), parent(P,C2). father(F,C) (F=john,C=mary) ; (F=john,C=peter). mother(M,C) (M=jane,C=mary) . person(P,G) (P=john, G=male) ; (P=peter, G=male) ; (P=jane, G=male) ; (P=mary, G=male) ; (P=paul, G=male).
158
CHRV vs. Prolog CFOL semantics of CHRV guardless, single head simplification rule, equivalent to CFOL semantics of pure Prolog clause set sharing same conclusion (Clark's completion) Simplification rule: sh <=> true | b11, ..., bkp ; ... ; b11, ..., blq. where: {X1, ..., Xn} = vars(shi), and {Y1, ... , Ym} = vars(b1 ... bk) \ {X1, ..., Xn} X1, ..., Xn true (sh Y1, ... , Ym ((b11 ... bkp) ... (b11 ... bkq)) Equivalent Prolog clauses: {sh :- b11, ..., bkp. , ... , sh :- b11, ..., blq.} Thus, using Clark's completion, any Prolog program can be reformulated into a semantically equivalent CHRV program CHRV extends Prolog with: Conjunctions in the heads Guards Non-ground numerical constraints heads, guards and bodies Propagation rules
159
... CLP with CHR CLP Engine CLP Application Rule Base
CHR Base for Domain D1 Solver Prolog Engine CHR Engine ... CHR Host Programming Language L Prolog/L Bridge CHR Base for Domain Dk Solver
160
... CLP with CHR CLP Application Rule Base
CHR Base for Domain D1 Solver CHR Engine ... CHR Host Programming Language L CHR Base for Domain Dk Solver
161
CHRV: Practical Applications
Declarative, easy to extend and compose constraint solvers and all their applications Scheduling, allocation, planning, optimization, recommendation, configuration Deductive theorem proving (propositional and first-order) and all its applications: CASE tools, declarative programs analysis, formal methods in hardware and software design, Hypothetical abductive reasoning and all its applications: Diagnosis and repair, observation explanation, sensor data integration Multi-agent reasoning Spatio-temporal reasoning and robotics Hybrid reasoning integrating: Deduction, belief revision, abduction, constraint solving and optimization with open and closed world assumption Heterogeneous knowledge integration Semantic web services Natural language processing
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.