Download presentation
Presentation is loading. Please wait.
1
Basilio Bona DAUIN – Politecnico di Torino
22/02/2019 ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino di 23
2
Example 01 Jacobians
3
Example 1 – DH parameters
Denavit – Hartenberg parameters Basilio Bona ROBOTICS 01PEEQW /2016
4
Example 1 Basilio Bona ROBOTICS 01PEEQW /2016
5
Example 1 Eqn. 1 Euler angles eqn. (2.79) page 52 Basilio Bona
ROBOTICS 01PEEQW /2016
6
Example 1 Knowing the Euler angles, everything will be easy.
Assume we do not know them. Squaring and adding Basilio Bona ROBOTICS 01PEEQW /2016
7
Example 1 Basilio Bona ROBOTICS 01PEEQW /2016
8
Example 1 Linear velocities Angular velocities: analytical approach
We call these “eulerian velocities” Basilio Bona ROBOTICS 01PEEQW /2016
9
Example 1 Analytic Jacobian (by differentiation) Eqn. 2a Eqn. 2b
Basilio Bona ROBOTICS 01PEEQW /2016
10
Example 1 Transformation matrix (see textbook) Basilio Bona
ROBOTICS 01PEEQW /2016
11
Example 1 From the previous slide we have the cartesian velocity in base RF we can now compute the Jacobian matrix Eq. 3 This is the geometric angular Jacobian Now we compute it in a different way Basilio Bona ROBOTICS 01PEEQW /2016
12
Example 1 First we compute the angular Jacobian
Both joints are rotoidal, therefore, considering results at page.92 First we compute the angular Jacobian These two columns are equal to those in Eqn. 3 Basilio Bona ROBOTICS 01PEEQW /2016
13
Example 1 This relation is obtained from direct KF – Eqn. 1
Basilio Bona ROBOTICS 01PEEQW /2016
14
Example 1 Then we compute
Instead of transforming it in RF 0 and after making the vector product, we make the vector product in RF 1 and then we transform the result to express it in RF 0 Basilio Bona ROBOTICS 01PEEQW /2016
15
Example 1 Now we transform from RF 1 to RF 0
In conclusions, the two linear Jacobians are It coincides with the results of Eqn. 2a Basilio Bona ROBOTICS 01PEEQW /2016
16
Example 1 Linear Jacobians are independent from the methods used to compute them (since we use always Cartesian representation) Instead, Angular Jacobians, depends on the conventions used to express the TCP orientation In conclusions: Analytical Jacobian Geometrical Jacobian Basilio Bona ROBOTICS 01PEEQW /2016
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.