Download presentation
Presentation is loading. Please wait.
1
Diagonalization Hung-yi Lee
2
Review If ๐ด๐ฃ=๐๐ฃ (๐ฃ is a vector, ๐ is a scalar)
๐ฃ is an eigenvector of A ๐ is an eigenvalue of A that corresponds to ๐ฃ Eigenvectors corresponding to ๐ are nonzero solution of (A ๏ญ ๏ฌIn)v = 0 A scalar ๐ก is an eigenvalue of A excluding zero vector Eigenvectors corresponding to ๐ Eigenspace of ๐: Eigenvectors corresponding to ๐ + ๐ =๐๐ข๐๐(A ๏ญ ๏ฌIn) ๏ญ ๐ eigenspace ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ =0
3
Review Characteristic polynomial of A is ๐๐๐ก ๐ดโ๐ก ๐ผ ๐
Factorization multiplicity = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ Eigenvalue: ๐ 1 ๐ 2 ๐ ๐ Eigenspace: ๐ 1 ๐ 2 ๐ ๐ (dimension) โค ๐ 1 โค ๐ 2 โค ๐ ๐
4
Outline An nxn matrix A is called diagonalizable if ๐ด= ๐๐ท ๐ โ1
D: nxn diagonal matrix P: nxn invertible matrix Is a matrix A diagonalizable? If yes, find D and P Reference: Textbook 5.3 Application 1: growth Application 2: linear operator
5
Diagonalizable An nxn matrix A is called diagonalizable if ๐ด= ๐๐ท ๐ โ1
D: nxn diagonal matrix P: nxn invertible matrix Not all matrices are diagonalizable (?) A2 = 0 If A = PDP๏ญ1 for some invertible P and diagonal D A2 = PD2P๏ญ1 = 0 D2 = 0 D = 0 D is diagonal A= 0
6
Diagonalizable ๐= ๐ 1 โฏ ๐ ๐ ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐
๐= ๐ 1 โฏ ๐ ๐ Diagonalizable ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐ If A is diagonalizable ๐ด=๐๐ท ๐ โ1 ๐ด๐=๐๐ท ๐ด๐= ๐ด ๐ 1 โฏ ๐ด ๐ ๐ ๐๐ท=๐ ๐ 1 ๐ 1 โฏ ๐ ๐ ๐ ๐ = ๐ ๐ 1 ๐ 1 โฏ ๐ ๐ ๐ ๐ ๐ = ๐ 1 ๐ ๐ 1 โฏ ๐ ๐ ๐ ๐ ๐ = ๐ 1 ๐ 1 โฏ ๐ ๐ ๐ ๐ ๐ด ๐ ๐ = ๐ ๐ ๐ ๐ ๐ ๐ is an eigenvector of A corresponding to eigenvalue ๐ ๐
7
Diagonalizable = = = ๐= ๐ 1 โฏ ๐ ๐ ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐
๐= ๐ 1 โฏ ๐ ๐ Diagonalizable ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐ If A is diagonalizable ๐ ๐ is an eigenvector of A corresponding to eigenvalue ๐ ๐ ๐ด=๐๐ท ๐ โ1 = There are n eigenvectors that form an invertible matrix = There are n independent eigenvectors = The eigenvectors of A can form a basis for Rn.
8
Diagonalizable ๐= ๐ 1 โฏ ๐ ๐ ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐
๐= ๐ 1 โฏ ๐ ๐ Diagonalizable ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐ If A is diagonalizable ๐ ๐ is an eigenvector of A corresponding to eigenvalue ๐ ๐ ๐ด=๐๐ท ๐ โ1 How to diagonalize a matrix A? Is diagonalizable unique? No. The eigen values can repeat in step 2. Find n L.I. eigenvectors corresponding if possible, and form an invertible P Step 1: The eigenvalues corresponding to the eigenvectors in P form the diagonal matrix D. Step 2:
9
Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ Factorization = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ โฆโฆ Eigenvalue: ๐ 1 ๐ 2 ๐ ๐ โฆโฆ Eigenspace: ๐ 1 โค ๐ 1 ๐ 2 โค ๐ 2 ๐ ๐ โค ๐ ๐ (dimension) Independent
10
Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ๐ 1 ๐ 2 Eigenvalue: ๐ ๐ โฆโฆ Assume dependent ๐ฃ ๐ Eigenvector: ๐ฃ 1 ๐ฃ 2 โฆโฆ a contradiction vk = c1v1+c2v2+ ๏ผ +ck๏ญ1vk๏ญ1 Avk = c1Av1+c2Av2+ ๏ผ +ck๏ญ1Avk๏ญ1 (๏ฌk) ๏ฌkvk = c1๏ฌ1v1+c2๏ฌ2v2+ ๏ผ +ck๏ญ1๏ฌk๏ญ1vk๏ญ1 - ๏ฌkvk = c1๏ฌkv1+c2๏ฌkv2+ ๏ผ +ck๏ญ1๏ฌkvk๏ญ1 0 = c1(๏ฌ1๏ญ๏ฌk) v1+c2(๏ฌ2๏ญ๏ฌk)v2+ ๏ผ +ck๏ญ1(๏ฌk๏ญ1๏ญ๏ฌk)vk๏ญ1 Not c1 = c2 = ๏ผ = ck๏ญ1 = 0 Same eigenvalue a contradiction
11
Independent Eigenvectors
๐= ๐ 1 โฏ ๐ ๐ Diagonalizable ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐ If A is diagonalizable ๐ ๐ is an eigenvector of A corresponding to eigenvalue ๐ ๐ ๐ด=๐๐ท ๐ โ1 ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ โฆโฆ Eigenvalue: ๐ 1 ๐ 2 ๐ ๐ Is diagonalizable unique? No. The eigen values can repeat in step 2. โฆโฆ Eigenspace: Basis for ๐ 1 Basis for ๐ 2 Basis for ๐ 3 Independent Eigenvectors You canโt find more!
12
Diagonalizable - Example
Diagonalize a given matrix characteristic polynomial is ๏ญ(t + 1)2(t ๏ญ 3) eigenvalues: 3, ๏ญ1 eigenvalue 3 A = PDP๏ญ1, where B1 = eigenvalue ๏ญ1 B2 =
13
Application of Diagonalization
If A is diagonalizable, Example: ๐ด=๐๐ท ๐ โ1 ๐ด ๐ =๐ ๐ท ๐ ๐ โ1 .15 Study FB .85 .97 .03 .85 โฆโฆ .85 Study Study Study .15 .727 .85 .15 .03 โฆโฆ FB FB .97 .273 .15
14
From Study FB To Study FB =๐ด โฆโฆ โฆโฆ .727 .273 .85 .15 1 0 ๐ด=๐๐ท ๐ โ1
.03 .85 .97 =๐ด .85 โฆโฆ .85 Study Study Study .15 .727 .85 .15 .03 โฆโฆ FB FB .97 .273 .15 The following example shows that stochastic matrices do not need to be diagonalizable, 1 0 ๐ด=๐๐ท ๐ โ1 ๐ด ๐ =๐ ๐ท ๐ ๐ โ1
15
Diagonalizable Diagonalize a given matrix RREF (invertible) RREF
16
Application of Diagonalization
When ๐โโ, The beginning condition does not influence. ๐ด ๐ = 1/6 1/6 5/6 5/6
17
Test for a Diagonalizable Matrix
An n x n matrix A is diagonalizable if and only if both the following conditions are met. The characteristic polynomial of A factors into a product of linear factors. ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ Factorization = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ For each eigenvalue l of A, the multiplicity of l equals the dimension of the corresponding eigenspace.
18
Independent Eigenvectors
An n x n matrix A is diagonalizable = The eigenvectors of A can form a basis for Rn. = ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ โฆโฆ Eigenvalue: ๐ 1 ๐ 2 ๐ ๐ โฆโฆ Eigenspace: ๐ 1 = ๐ 1 ๐ 2 = ๐ 2 ๐ ๐ = ๐ ๐ (dimension)
19
This lecture ๐ฃ B ๐ ๐ฃ B ๐ต โ1 ๐ต ๐ฃ ๐ ๐ฃ Reference: Chapter 5.4 ๐ B simple
Properly selected Properly selected ๐ ๐ฃ ๐ ๐ฃ
20
Independent Eigenvectors
๐= ๐ 1 โฏ ๐ ๐ ๐ท= ๐ 1 โฏ 0 โฎ โฑ โฎ 0 โฏ ๐ ๐ Review eigenvector eigenvalue An n x n matrix A is diagonalizable (๐ด=๐๐ท ๐ โ1 ) = The eigenvectors of A can form a basis for Rn. ๐๐๐ก ๐ดโ๐ก ๐ผ ๐ = ๐กโ ๐ 1 ๐ 1 ๐กโ ๐ 2 ๐ 2 โฆ ๐กโ ๐ ๐ ๐ ๐ โฆโฆ โฆโฆ Eigenvalue: ๐ 1 ๐ 2 ๐ ๐ โฆโฆ Eigenspace: Basis for ๐ 1 Basis for ๐ 2 Basis for ๐ 3 Independent Eigenvectors
21
Diagonalization of Linear Operator
๐ ๐ฅ 1 ๐ฅ 2 ๐ฅ 3 = 8 ๐ฅ 1 +9 ๐ฅ 2 โ6 ๐ฅ 1 โ7 ๐ฅ 2 3 ๐ฅ 1 +3 ๐ฅ 2 โ ๐ฅ 3 Example 1: det -t ๐ด= โ6 โ โ1 The standard matrix is -t -t ๏ the characteristic polynomial is ๏ญ(t + 1)2(t ๏ญ 2) ๏ eigenvalues: ๏ญ1, 2 Eigenvalue -1: Eigenvalue 2: B1= โ , B2= 3 โ2 1 ๏ B1 ๏ B2 is a basis of R 3 ๏ T is diagonalizable.
22
Diagonalization of Linear Operator
๐ ๐ฅ 1 ๐ฅ 2 ๐ฅ 3 = โ ๐ฅ 1 + ๐ฅ 2 +2 ๐ฅ 3 ๐ฅ 1 โ ๐ฅ 2 0 Example 2: det -t ๐ด= โ โ The standard matrix is -t -t ๏ the characteristic polynomial is ๏ญt2(t + 2) ๏ eigenvalues: 0, ๏ญ2 ๏ the reduced row echelon form of A ๏ญ 0I3 = A is 1 โ ๏ the eigenspaces corresponding to the eigenvalue 0 has the dimension 1 < 2 = algebraic multiplicity of the eigenvalue 0 ๏ T is not diagonalizable.
23
Diagonalization of Linear Operator
If a linear operator T is diagonalizable ๐ท ๐ B ๐ฃ B ๐ ๐ฃ B simple Eigenvectors form the good system ๐ โ1 ๐ ๐ต โ1 ๐ต Properly selected Properly selected ๐ด=๐๐ท ๐ โ1 ๐ฃ ๐ ๐ฃ
24
Diagonalization of Linear Operator
-1: 2: ๐ ๐ฅ 1 ๐ฅ 2 ๐ฅ 3 = 8 ๐ฅ 1 +9 ๐ฅ 2 โ6 ๐ฅ 1 โ7 ๐ฅ 2 3 ๐ฅ 1 +3 ๐ฅ 2 โ ๐ฅ 3 B1= โ , B2= 3 โ2 1 ๐ B ๐ฃ B ๐ ๐ฃ B โ โ โ โ โ1 โ โ 8 9 0 โ6 โ โ1 ๐ฃ ๐ ๐ฃ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.