Presentation is loading. Please wait.

Presentation is loading. Please wait.

Diagonalization Hung-yi Lee.

Similar presentations


Presentation on theme: "Diagonalization Hung-yi Lee."โ€” Presentation transcript:

1 Diagonalization Hung-yi Lee

2 Review If ๐ด๐‘ฃ=๐œ†๐‘ฃ (๐‘ฃ is a vector, ๐œ† is a scalar)
๐‘ฃ is an eigenvector of A ๐œ† is an eigenvalue of A that corresponds to ๐‘ฃ Eigenvectors corresponding to ๐œ† are nonzero solution of (A ๏€ญ ๏ฌIn)v = 0 A scalar ๐‘ก is an eigenvalue of A excluding zero vector Eigenvectors corresponding to ๐œ† Eigenspace of ๐œ†: Eigenvectors corresponding to ๐œ† + ๐ŸŽ =๐‘๐‘ข๐‘™๐‘™(A ๏€ญ ๏ฌIn) ๏€ญ ๐ŸŽ eigenspace ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› =0

3 Review Characteristic polynomial of A is ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘›
Factorization multiplicity = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ Eigenspace: ๐‘‘ 1 ๐‘‘ 2 ๐‘‘ ๐‘˜ (dimension) โ‰ค ๐‘š 1 โ‰ค ๐‘š 2 โ‰ค ๐‘š ๐‘˜

4 Outline An nxn matrix A is called diagonalizable if ๐ด= ๐‘ƒ๐ท ๐‘ƒ โˆ’1
D: nxn diagonal matrix P: nxn invertible matrix Is a matrix A diagonalizable? If yes, find D and P Reference: Textbook 5.3 Application 1: growth Application 2: linear operator

5 Diagonalizable An nxn matrix A is called diagonalizable if ๐ด= ๐‘ƒ๐ท ๐‘ƒ โˆ’1
D: nxn diagonal matrix P: nxn invertible matrix Not all matrices are diagonalizable (?) A2 = 0 If A = PDP๏€ญ1 for some invertible P and diagonal D A2 = PD2P๏€ญ1 = 0 D2 = 0 D = 0 D is diagonal A= 0

6 Diagonalizable ๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘›
๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› Diagonalizable ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘› If A is diagonalizable ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐ด๐‘ƒ=๐‘ƒ๐ท ๐ด๐‘ƒ= ๐ด ๐‘ 1 โ‹ฏ ๐ด ๐‘ ๐‘› ๐‘ƒ๐ท=๐‘ƒ ๐‘‘ 1 ๐‘’ 1 โ‹ฏ ๐‘‘ ๐‘› ๐‘’ ๐‘› = ๐‘ƒ ๐‘‘ 1 ๐‘’ 1 โ‹ฏ ๐‘ƒ ๐‘‘ ๐‘› ๐‘’ ๐‘› = ๐‘‘ 1 ๐‘ƒ ๐‘’ 1 โ‹ฏ ๐‘‘ ๐‘› ๐‘ƒ ๐‘’ ๐‘› = ๐‘‘ 1 ๐‘ 1 โ‹ฏ ๐‘‘ ๐‘› ๐‘ ๐‘› ๐ด ๐‘ ๐‘– = ๐‘‘ ๐‘– ๐‘ ๐‘– ๐‘ ๐‘– is an eigenvector of A corresponding to eigenvalue ๐‘‘ ๐‘–

7 Diagonalizable = = = ๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘›
๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› Diagonalizable ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘› If A is diagonalizable ๐‘ ๐‘– is an eigenvector of A corresponding to eigenvalue ๐‘‘ ๐‘– ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 = There are n eigenvectors that form an invertible matrix = There are n independent eigenvectors = The eigenvectors of A can form a basis for Rn.

8 Diagonalizable ๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘›
๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› Diagonalizable ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘› If A is diagonalizable ๐‘ ๐‘– is an eigenvector of A corresponding to eigenvalue ๐‘‘ ๐‘– ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 How to diagonalize a matrix A? Is diagonalizable unique? No. The eigen values can repeat in step 2. Find n L.I. eigenvectors corresponding if possible, and form an invertible P Step 1: The eigenvalues corresponding to the eigenvectors in P form the diagonal matrix D. Step 2:

9 Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› Factorization = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ โ€ฆโ€ฆ Eigenspace: ๐‘‘ 1 โ‰ค ๐‘š 1 ๐‘‘ 2 โ‰ค ๐‘š 2 ๐‘‘ ๐‘˜ โ‰ค ๐‘š ๐‘˜ (dimension) Independent

10 Diagonalizable A set of eigenvectors that correspond to distinct eigenvalues is linear independent. ๐œ† 1 ๐œ† 2 Eigenvalue: ๐œ† ๐‘š โ€ฆโ€ฆ Assume dependent ๐‘ฃ ๐‘š Eigenvector: ๐‘ฃ 1 ๐‘ฃ 2 โ€ฆโ€ฆ a contradiction vk = c1v1+c2v2+ ๏‚ผ +ck๏€ญ1vk๏€ญ1 Avk = c1Av1+c2Av2+ ๏‚ผ +ck๏€ญ1Avk๏€ญ1 (๏ฌk) ๏ฌkvk = c1๏ฌ1v1+c2๏ฌ2v2+ ๏‚ผ +ck๏€ญ1๏ฌk๏€ญ1vk๏€ญ1 - ๏ฌkvk = c1๏ฌkv1+c2๏ฌkv2+ ๏‚ผ +ck๏€ญ1๏ฌkvk๏€ญ1 0 = c1(๏ฌ1๏€ญ๏ฌk) v1+c2(๏ฌ2๏€ญ๏ฌk)v2+ ๏‚ผ +ck๏€ญ1(๏ฌk๏€ญ1๏€ญ๏ฌk)vk๏€ญ1 Not c1 = c2 = ๏‚ผ = ck๏€ญ1 = 0 Same eigenvalue a contradiction

11 Independent Eigenvectors
๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› Diagonalizable ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘› If A is diagonalizable ๐‘ ๐‘– is an eigenvector of A corresponding to eigenvalue ๐‘‘ ๐‘– ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ Is diagonalizable unique? No. The eigen values can repeat in step 2. โ€ฆโ€ฆ Eigenspace: Basis for ๐œ† 1 Basis for ๐œ† 2 Basis for ๐œ† 3 Independent Eigenvectors You canโ€™t find more!

12 Diagonalizable - Example
Diagonalize a given matrix characteristic polynomial is ๏€ญ(t + 1)2(t ๏€ญ 3) eigenvalues: 3, ๏€ญ1 eigenvalue 3 A = PDP๏€ญ1, where B1 = eigenvalue ๏€ญ1 B2 =

13 Application of Diagonalization
If A is diagonalizable, Example: ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐ด ๐‘š =๐‘ƒ ๐ท ๐‘š ๐‘ƒ โˆ’1 .15 Study FB .85 .97 .03 .85 โ€ฆโ€ฆ .85 Study Study Study .15 .727 .85 .15 .03 โ€ฆโ€ฆ FB FB .97 .273 .15

14 From Study FB To Study FB =๐ด โ€ฆโ€ฆ โ€ฆโ€ฆ .727 .273 .85 .15 1 0 ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1
.03 .85 .97 =๐ด .85 โ€ฆโ€ฆ .85 Study Study Study .15 .727 .85 .15 .03 โ€ฆโ€ฆ FB FB .97 .273 .15 The following example shows that stochastic matrices do not need to be diagonalizable, 1 0 ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐ด ๐‘š =๐‘ƒ ๐ท ๐‘š ๐‘ƒ โˆ’1

15 Diagonalizable Diagonalize a given matrix RREF (invertible) RREF

16 Application of Diagonalization
When ๐‘šโ†’โˆž, The beginning condition does not influence. ๐ด ๐‘š = 1/6 1/6 5/6 5/6

17 Test for a Diagonalizable Matrix
An n x n matrix A is diagonalizable if and only if both the following conditions are met. The characteristic polynomial of A factors into a product of linear factors. ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› Factorization = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ For each eigenvalue l of A, the multiplicity of l equals the dimension of the corresponding eigenspace.

18 Independent Eigenvectors
An n x n matrix A is diagonalizable = The eigenvectors of A can form a basis for Rn. = ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ โ€ฆโ€ฆ Eigenspace: ๐‘‘ 1 = ๐‘š 1 ๐‘‘ 2 = ๐‘š 2 ๐‘‘ ๐‘˜ = ๐‘š ๐‘˜ (dimension)

19 This lecture ๐‘ฃ B ๐‘‡ ๐‘ฃ B ๐ต โˆ’1 ๐ต ๐‘ฃ ๐‘‡ ๐‘ฃ Reference: Chapter 5.4 ๐‘‡ B simple
Properly selected Properly selected ๐‘‡ ๐‘ฃ ๐‘‡ ๐‘ฃ

20 Independent Eigenvectors
๐‘ƒ= ๐‘ 1 โ‹ฏ ๐‘ ๐‘› ๐ท= ๐‘‘ 1 โ‹ฏ 0 โ‹ฎ โ‹ฑ โ‹ฎ 0 โ‹ฏ ๐‘‘ ๐‘› Review eigenvector eigenvalue An n x n matrix A is diagonalizable (๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ) = The eigenvectors of A can form a basis for Rn. ๐‘‘๐‘’๐‘ก ๐ดโˆ’๐‘ก ๐ผ ๐‘› = ๐‘กโˆ’ ๐œ† 1 ๐‘š 1 ๐‘กโˆ’ ๐œ† 2 ๐‘š 2 โ€ฆ ๐‘กโˆ’ ๐œ† ๐‘˜ ๐‘š ๐‘˜ โ€ฆโ€ฆ โ€ฆโ€ฆ Eigenvalue: ๐œ† 1 ๐œ† 2 ๐œ† ๐‘˜ โ€ฆโ€ฆ Eigenspace: Basis for ๐œ† 1 Basis for ๐œ† 2 Basis for ๐œ† 3 Independent Eigenvectors

21 Diagonalization of Linear Operator
๐‘‡ ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 8 ๐‘ฅ 1 +9 ๐‘ฅ 2 โˆ’6 ๐‘ฅ 1 โˆ’7 ๐‘ฅ 2 3 ๐‘ฅ 1 +3 ๐‘ฅ 2 โˆ’ ๐‘ฅ 3 Example 1: det -t ๐ด= โˆ’6 โˆ’ โˆ’1 The standard matrix is -t -t ๏ƒž the characteristic polynomial is ๏€ญ(t + 1)2(t ๏€ญ 2) ๏ƒž eigenvalues: ๏€ญ1, 2 Eigenvalue -1: Eigenvalue 2: B1= โˆ’ , B2= 3 โˆ’2 1 ๏ƒž B1 ๏ƒˆ B2 is a basis of R 3 ๏ƒž T is diagonalizable.

22 Diagonalization of Linear Operator
๐‘‡ ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = โˆ’ ๐‘ฅ 1 + ๐‘ฅ 2 +2 ๐‘ฅ 3 ๐‘ฅ 1 โˆ’ ๐‘ฅ 2 0 Example 2: det -t ๐ด= โˆ’ โˆ’ The standard matrix is -t -t ๏ƒž the characteristic polynomial is ๏€ญt2(t + 2) ๏ƒž eigenvalues: 0, ๏€ญ2 ๏ƒž the reduced row echelon form of A ๏€ญ 0I3 = A is 1 โˆ’ ๏ƒž the eigenspaces corresponding to the eigenvalue 0 has the dimension 1 < 2 = algebraic multiplicity of the eigenvalue 0 ๏ƒž T is not diagonalizable.

23 Diagonalization of Linear Operator
If a linear operator T is diagonalizable ๐ท ๐‘‡ B ๐‘ฃ B ๐‘‡ ๐‘ฃ B simple Eigenvectors form the good system ๐‘ƒ โˆ’1 ๐‘ƒ ๐ต โˆ’1 ๐ต Properly selected Properly selected ๐ด=๐‘ƒ๐ท ๐‘ƒ โˆ’1 ๐‘ฃ ๐‘‡ ๐‘ฃ

24 Diagonalization of Linear Operator
-1: 2: ๐‘‡ ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3 = 8 ๐‘ฅ 1 +9 ๐‘ฅ 2 โˆ’6 ๐‘ฅ 1 โˆ’7 ๐‘ฅ 2 3 ๐‘ฅ 1 +3 ๐‘ฅ 2 โˆ’ ๐‘ฅ 3 B1= โˆ’ , B2= 3 โˆ’2 1 ๐‘‡ B ๐‘ฃ B ๐‘‡ ๐‘ฃ B โˆ’ โˆ’ โˆ’ โˆ’ โˆ’1 โˆ’ โˆ’ 8 9 0 โˆ’6 โˆ’ โˆ’1 ๐‘ฃ ๐‘‡ ๐‘ฃ


Download ppt "Diagonalization Hung-yi Lee."

Similar presentations


Ads by Google