Presentation is loading. Please wait.

Presentation is loading. Please wait.

Basic Concepts, Necessary and Sufficient conditions

Similar presentations


Presentation on theme: "Basic Concepts, Necessary and Sufficient conditions"β€” Presentation transcript:

1 Basic Concepts, Necessary and Sufficient conditions
Dynamic Optimization Basic Concepts, Necessary and Sufficient conditions Lecture 30

2 Concept of function and functional …
Functional: It is a function of other functions Examples: 𝑓( 𝑓 1 π‘₯ , 𝑓 2 π‘₯ … 𝑓 𝑛 π‘₯ ) 𝑓(π‘₯ 𝑑 , π‘₯ 𝑑 ,𝑑) 𝐽 𝑣 𝑑 = 𝑑 0 𝑑 𝑓 𝑣 𝑑 𝑑𝑑 It represents distance traveled, v(t) is velocity In general 𝐽 π‘₯ 𝑑 ,𝑑 = 𝑑 0 𝑑 𝑓 𝑣(π‘₯ 𝑑 ,𝑑)𝑑𝑑

3 Concept of function and functional …
Increment of functional: Consider following functional 𝐽 π‘₯ 𝑑 ,𝑑 = 𝑑 0 𝑑 𝑓 𝑣(π‘₯ 𝑑 ,𝑑)𝑑𝑑 βˆ†π½ π‘₯ 𝑑 ,𝑑 =𝐽 π‘₯ 𝑑 +𝛿π‘₯(𝑑),𝑑 βˆ’π½ π‘₯ 𝑑 ,𝑑 (1) Do Taylor’s series expansion of 2nd term βˆ†π½ π‘₯ 𝑑 ,𝑑 =𝐽 π‘₯ βˆ— 𝑑 ,𝑑 + 1 1! πœ•π½ . πœ•π‘₯ π‘₯ 𝑑 = π‘₯ βˆ— 𝑑 𝛿π‘₯ 𝑑 ! πœ• 2 𝐽 . πœ•π‘₯ 2 π‘₯ 𝑑 = π‘₯ βˆ— 𝑑 𝛿π‘₯(𝑑) 2 +β€¦βˆ’π½ π‘₯ βˆ— 𝑑 ,𝑑 Perturbation

4 Concept of function and functional …
βˆ†π½ π‘₯ 𝑑 ,𝑑 = 1 1! πœ•π½ . πœ•π‘₯ π‘₯ 𝑑 = π‘₯ βˆ— 𝑑 𝛿π‘₯ 𝑑 + 1 2! πœ• 2 𝐽 . πœ•π‘₯ 2 π‘₯ 𝑑 = π‘₯ βˆ— 𝑑 𝛿π‘₯(𝑑) 2 βˆ†π½=𝛿𝐽 +𝛿 2 𝐽 Necessary condition for a functional to be extremum (min or max) 𝛿𝐽=0 and If 𝛿 2 𝐽>0 functional value is minimum If 𝛿 2 𝐽<0 functional value is maximum 𝛿𝐽 1st variation of functional 𝛿 2 𝐽 2nd variation of functional Neglecting higher order terms

5 Two point boundary value problem (TPBVP)

6 is optimized (Extrimum -> maximize or minimize) Assumptions:
Problem 1: Our problem is to find out the optimal trajectory x*(t) for which the functional 𝐽 π‘₯ 𝑑 ,𝑑 = 𝑑 0 𝑑 𝑓 𝑣(π‘₯ 𝑑 , π‘₯ 𝑑 ,𝑑)𝑑𝑑 ---(1) is optimized (Extrimum -> maximize or minimize) Assumptions: V(.) has 1st and 2nd partial derivatives w.r.t all its arguments

7 Necessary Conditions:
πœ•π‘‰ . πœ•π‘₯ 𝑑 βˆ’ 𝑑 𝑑𝑑 πœ•π‘‰ . πœ• π‘₯ 𝑑 = 0 𝑛× (1) 𝑣 . βˆ’ πœ•π‘‰ . πœ• π‘₯ 𝑑 𝑇 π‘₯ (𝑑) 𝑑= 𝑑 𝑓 =0 ---(2) if 𝑑 𝑓 is free, ⇒𝛿 𝑑 𝑓 β‰ 0 πœ•π‘‰ . πœ• π‘₯ 𝑑 𝑑= 𝑑 𝑓 = (3) if π‘₯(𝑑 𝑓 ) is free, ⇒𝛿 π‘₯ 𝑓 β‰ 0 (1) Euler’s Lagrange equation(E.L equation). (2) & (3) Transversality conditions

8 Necessary Conditions:…
Case 1: when both end are fixed i.e 𝑑 𝑓 and π‘₯(𝑑 𝑓 ) are fixed We need to solve equation (1) to get optimum trajectory π‘₯ βˆ— (𝑑)

9 Necessary Conditions:…
A(t0, x(t0)) B(tf , x(tf)) t0 tf x(t0)=x0 x(tf)=xf t Say this is optimal path π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑) π‘₯ βˆ— 𝑑 π‘₯(𝑑) This is suboptimal path very close to x*(t) 𝛿π‘₯(𝑑)

10 Necessary Conditions:…
Case 2: when 𝑑 𝑓 and π‘₯(𝑑 𝑓 ) are free We need to solve equations (1), (2) & (3) to get optimum trajectory π‘₯ βˆ— (𝑑) A t0 tf t π‘₯(𝑑) 𝑑 𝑓 +𝛿 𝑑 𝑓 D C π‘₯ βˆ— (𝑑) π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑)

11 Necessary Conditions:…
Case 3: when 𝑑 𝑓 is fixed but π‘₯(𝑑 𝑓 ) is free We need to solve equations (1) & (2) to get optimum trajectory π‘₯ βˆ— (𝑑) t0 tf t π‘₯(𝑑) 𝑑 𝑓 +𝛿 𝑑 𝑓 π‘₯ βˆ— (𝑑) π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑) π‘₯(𝑑 𝑓 )

12 Necessary Conditions:…
Case 4: when 𝑑 𝑓 is free but π‘₯(𝑑 𝑓 ) is fixed We need to solve equations (1) & (3) to get optimum trajectory π‘₯ βˆ— (𝑑) t0 t π‘₯(𝑑) 𝑑 𝑓 π‘₯ βˆ— (𝑑) π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑)

13 Necessary Conditions:…
Case 5: When end point B restricted to a curve g(t) t0 t π‘₯(𝑑) 𝑑 𝑓 π‘₯ βˆ— (𝑑) π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑) g(t) D C 𝛿π‘₯ 𝑓 =𝛿π‘₯( 𝑑 𝑓 +𝛿 𝑑 𝑓 ) B A 𝑑 𝑓 +𝛿 𝑑 𝑓

14 Necessary Conditions:…
𝑣 . βˆ’ πœ•π‘‰ . πœ• π‘₯ 𝑑 𝑇 π‘₯ 𝑑 βˆ’ 𝑔 (𝑑) 𝑑= 𝑑 𝑓 =0 ---(4) Equ (4) is also known as Transversality conditions for the case when the end point B is restricted on a curve g(t). We need to solve equations (1) & (4) to get optimum trajectory π‘₯ βˆ— (𝑑)

15 Sufficient condition Condition to check whether the given functional is maximum or minimum Similar to sufficient condition of static optimization problem

16 Sufficient condition…
β‡’ 𝛻 2 𝐽= 1 2! 𝑑 0 𝑑 𝑓 𝛿π‘₯(𝑑) 𝛿 π‘₯ (𝑑) πœ• 2 𝑉 . πœ• π‘₯ 2 𝑑 πœ•π‘‰ . πœ•π‘₯ 𝑑 πœ• π‘₯ 𝑑 πœ•π‘‰ . πœ•π‘₯ 𝑑 πœ• π‘₯ 𝑑 πœ• 2 𝑉 . πœ• π‘₯ 2 𝑑 βˆ— 𝛿π‘₯(𝑑) 𝛿 π‘₯ (𝑑) 𝑑𝑑 Say P which is a 2nx2n matrix as each 2nd derivative of V(.) is nxn matrix

17 Sufficient condition…
If 𝛻 2 𝐽>0⇒𝑃>0 (+𝑑𝑒𝑓𝑖𝑛𝑒𝑖𝑑𝑒) => functional value will be minimum =>J*(.) will be the minimum value along with the optimum trajectory x*(t) If 𝛻 2 𝐽<0⇒𝑃<0 (βˆ’π‘‘π‘’π‘“π‘–π‘›π‘’π‘–π‘‘π‘’) => functional value will be maximum =>J*(.) will be the maximum value along with the optimum trajectory x*(t)

18 Example: (Using calculus of variation)
Example 1: Find the extremal for the functional 𝐽= 𝑑 0 =0 𝑑 𝑓 2 π‘₯ 2 𝑑 +24𝑑π‘₯ 𝑑 𝑑𝑑 Where the left hand point (A) is fixed i.e. t0 =0 & x(t0) =0 And in right hand point (B) tf is free but x(tf) = 2

19 Example:… Solution: This is following problem 𝑉 . =2 π‘₯ 2 𝑑 +24𝑑π‘₯ 𝑑
𝑉 . =2 π‘₯ 2 𝑑 +24𝑑π‘₯ 𝑑 t0 tf t π‘₯(𝑑) 𝑑 𝑓 +𝛿 𝑑 𝑓 π‘₯ βˆ— (𝑑) π‘₯ π‘Ž 𝑑 = π‘₯ βˆ— 𝑑 +𝛿π‘₯(𝑑) π‘₯(𝑑 𝑓 )=2

20 Example:… E.L equation πœ•π‘‰ . πœ•π‘₯ 𝑑 βˆ’ 𝑑 𝑑𝑑 πœ•π‘‰ . πœ• π‘₯ 𝑑 = 0 1Γ—1 (x is scalar variable) β‡’24π‘‘βˆ’ 𝑑 𝑑𝑑 4 π‘₯ (𝑑) =0 β‡’24π‘‘βˆ’4 π‘₯ (𝑑)=0 β‡’ π‘₯ (𝑑)=6𝑑 ---(1) Solving above equation, Integrating equ(1) π‘₯ 𝑑 𝑑𝑑= 6𝑑𝑑𝑑 β‡’ π‘₯ 𝑑 =3 𝑑 2 + 𝑐 (2) again integrating β‡’ π‘₯ 𝑑 𝑑𝑑= 3 𝑑 2 + 𝑐 1 𝑑𝑑 β‡’π‘₯ 𝑑 = 𝑑 3 + 𝑐 1 𝑑+ 𝑐 (3)

21 Example:… Put t=t0=0 in equation (3) π‘₯ 𝑑 =0= 0 3 + 𝑐 1 Γ—0+ 𝑐 2
⇒𝑐 2 =0 put in equation (3) β‡’π‘₯ 𝑑 = 𝑑 3 + 𝑐 1 𝑑 ---(4) Put t=tf & π‘₯ 𝑑 𝑓 =2 in equation (4) π‘₯ 𝑑 𝑓 =2= 𝑑 𝑓 3 + 𝑐 1 𝑑 𝑓 ⇒𝑐 1 = 2βˆ’ 𝑑 𝑓 3 𝑑 𝑓 (5)

22 Example:… Transversality condition: Here 𝑑 𝑓 is free, so
𝑣 . βˆ’ πœ•π‘‰ . πœ• π‘₯ 𝑑 𝑇 π‘₯ (𝑑) 𝑑= 𝑑 𝑓 =0 2 π‘₯ 2 𝑑 +24𝑑π‘₯ 𝑑 βˆ’(4 π‘₯ (𝑑)) π‘₯ (𝑑) 𝑑= 𝑑 𝑓 =0 dividing by 2 β‡’ π‘₯ 2 𝑑 𝑓 +12 𝑑 𝑓 π‘₯ 𝑑 𝑓 βˆ’2 π‘₯ 2 ( 𝑑 𝑓 ) β‡’ π‘₯ 2 𝑑 𝑓 βˆ’12 𝑑 𝑓 π‘₯ 𝑑 𝑓 =0 put value of π‘₯ (𝑑) from equ(2) β‡’ 3 𝑑 𝑓 2 + 𝑐 βˆ’12 𝑑 𝑓 π‘₯ 𝑑 𝑓 =0 put π‘₯ 𝑑 𝑓 =2 β‡’9 𝑑 𝑓 4 + 𝑐 𝑑 𝑓 2 𝑐 1 βˆ’24 𝑑 𝑓 =0

23 Example:… Put the value of 𝑐 1 = 2βˆ’ 𝑑 𝑓 3 𝑑 𝑓 from equ (5) in previous equ β‡’9 𝑑 𝑓 βˆ’ 𝑑 𝑓 3 𝑑 𝑓 𝑑 𝑓 2 2βˆ’ 𝑑 𝑓 3 𝑑 𝑓 βˆ’24 𝑑 𝑓 =0 ⇒𝑑 𝑓 6 βˆ’4 𝑑 𝑓 3 +1=0 Put 𝑑 𝑓 3 =𝑧 𝑧 2 βˆ’4𝑧+1=0 ⇒𝑧=2Β± 3 =3.732, β‡’ 𝑑 𝑓 = & β‡’ 𝑑 𝑓 =1.551 &

24 Example:… For 𝑑 𝑓 =1.551 , 𝑐 1 = 2βˆ’ 𝑑 𝑓 3 𝑑 𝑓 =βˆ’1.117 so
π‘₯ βˆ— 𝑑 = 𝑑 3 + 𝑐 1 𝑑= 𝑑 3 βˆ’1.117𝑑 ---(6) For 𝑑 𝑓 = , 𝑐 1 = 2βˆ’ 𝑑 𝑓 3 𝑑 𝑓 =2.6871so π‘₯ βˆ— 𝑑 = 𝑑 3 + 𝑐 1 𝑑= 𝑑 𝑑 --(7) There are two optimal trajectory given by (6) & (7), one will give minimum value other will give maximum value. For this apply sufficient condition

25 Example:… sufficient condition
𝑃= πœ• 2 𝑉 . πœ• π‘₯ 2 𝑑 πœ•π‘‰ . πœ•π‘₯ 𝑑 πœ• π‘₯ 𝑑 πœ•π‘‰ . πœ•π‘₯ 𝑑 πœ• π‘₯ 𝑑 πœ• 2 𝑉 . πœ• π‘₯ 2 𝑑 βˆ— If 𝑃>0 (+𝑑𝑒𝑓𝑖𝑛𝑒𝑖𝑑𝑒) => functional J*(.) value will be minimum If 𝑃<0 (βˆ’π‘‘π‘’π‘“π‘–π‘›π‘’π‘–π‘‘π‘’) => functional J*(.) value will be maximum


Download ppt "Basic Concepts, Necessary and Sufficient conditions"

Similar presentations


Ads by Google