Download presentation
Presentation is loading. Please wait.
Published byIda Hartanto Modified over 6 years ago
1
Basic Concepts, Necessary and Sufficient conditions
Dynamic Optimization Basic Concepts, Necessary and Sufficient conditions Lecture 30
2
Concept of function and functional β¦
Functional: It is a function of other functions Examples: π( π 1 π₯ , π 2 π₯ β¦ π π π₯ ) π(π₯ π‘ , π₯ π‘ ,π‘) π½ π£ π‘ = π‘ 0 π‘ π π£ π‘ ππ‘ It represents distance traveled, v(t) is velocity In general π½ π₯ π‘ ,π‘ = π‘ 0 π‘ π π£(π₯ π‘ ,π‘)ππ‘
3
Concept of function and functional β¦
Increment of functional: Consider following functional π½ π₯ π‘ ,π‘ = π‘ 0 π‘ π π£(π₯ π‘ ,π‘)ππ‘ βπ½ π₯ π‘ ,π‘ =π½ π₯ π‘ +πΏπ₯(π‘),π‘ βπ½ π₯ π‘ ,π‘ (1) Do Taylorβs series expansion of 2nd term βπ½ π₯ π‘ ,π‘ =π½ π₯ β π‘ ,π‘ + 1 1! ππ½ . ππ₯ π₯ π‘ = π₯ β π‘ πΏπ₯ π‘ ! π 2 π½ . ππ₯ 2 π₯ π‘ = π₯ β π‘ πΏπ₯(π‘) 2 +β¦βπ½ π₯ β π‘ ,π‘ Perturbation
4
Concept of function and functional β¦
βπ½ π₯ π‘ ,π‘ = 1 1! ππ½ . ππ₯ π₯ π‘ = π₯ β π‘ πΏπ₯ π‘ + 1 2! π 2 π½ . ππ₯ 2 π₯ π‘ = π₯ β π‘ πΏπ₯(π‘) 2 βπ½=πΏπ½ +πΏ 2 π½ Necessary condition for a functional to be extremum (min or max) πΏπ½=0 and If πΏ 2 π½>0 functional value is minimum If πΏ 2 π½<0 functional value is maximum πΏπ½ 1st variation of functional πΏ 2 π½ 2nd variation of functional Neglecting higher order terms
5
Two point boundary value problem (TPBVP)
6
is optimized (Extrimum -> maximize or minimize) Assumptions:
Problem 1: Our problem is to find out the optimal trajectory x*(t) for which the functional π½ π₯ π‘ ,π‘ = π‘ 0 π‘ π π£(π₯ π‘ , π₯ π‘ ,π‘)ππ‘ ---(1) is optimized (Extrimum -> maximize or minimize) Assumptions: V(.) has 1st and 2nd partial derivatives w.r.t all its arguments
7
Necessary Conditions:
ππ . ππ₯ π‘ β π ππ‘ ππ . π π₯ π‘ = 0 πΓ (1) π£ . β ππ . π π₯ π‘ π π₯ (π‘) π‘= π‘ π =0 ---(2) if π‘ π is free, βπΏ π‘ π β 0 ππ . π π₯ π‘ π‘= π‘ π = (3) if π₯(π‘ π ) is free, βπΏ π₯ π β 0 (1) Eulerβs Lagrange equation(E.L equation). (2) & (3) Transversality conditions
8
Necessary Conditions:β¦
Case 1: when both end are fixed i.e π‘ π and π₯(π‘ π ) are fixed We need to solve equation (1) to get optimum trajectory π₯ β (π‘)
9
Necessary Conditions:β¦
A(t0, x(t0)) B(tf , x(tf)) t0 tf x(t0)=x0 x(tf)=xf t Say this is optimal path π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘) π₯ β π‘ π₯(π‘) This is suboptimal path very close to x*(t) πΏπ₯(π‘)
10
Necessary Conditions:β¦
Case 2: when π‘ π and π₯(π‘ π ) are free We need to solve equations (1), (2) & (3) to get optimum trajectory π₯ β (π‘) A t0 tf t π₯(π‘) π‘ π +πΏ π‘ π D C π₯ β (π‘) π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘)
11
Necessary Conditions:β¦
Case 3: when π‘ π is fixed but π₯(π‘ π ) is free We need to solve equations (1) & (2) to get optimum trajectory π₯ β (π‘) t0 tf t π₯(π‘) π‘ π +πΏ π‘ π π₯ β (π‘) π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘) π₯(π‘ π )
12
Necessary Conditions:β¦
Case 4: when π‘ π is free but π₯(π‘ π ) is fixed We need to solve equations (1) & (3) to get optimum trajectory π₯ β (π‘) t0 t π₯(π‘) π‘ π π₯ β (π‘) π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘)
13
Necessary Conditions:β¦
Case 5: When end point B restricted to a curve g(t) t0 t π₯(π‘) π‘ π π₯ β (π‘) π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘) g(t) D C πΏπ₯ π =πΏπ₯( π‘ π +πΏ π‘ π ) B A π‘ π +πΏ π‘ π
14
Necessary Conditions:β¦
π£ . β ππ . π π₯ π‘ π π₯ π‘ β π (π‘) π‘= π‘ π =0 ---(4) Equ (4) is also known as Transversality conditions for the case when the end point B is restricted on a curve g(t). We need to solve equations (1) & (4) to get optimum trajectory π₯ β (π‘)
15
Sufficient condition Condition to check whether the given functional is maximum or minimum Similar to sufficient condition of static optimization problem
16
Sufficient conditionβ¦
β π» 2 π½= 1 2! π‘ 0 π‘ π πΏπ₯(π‘) πΏ π₯ (π‘) π 2 π . π π₯ 2 π‘ ππ . ππ₯ π‘ π π₯ π‘ ππ . ππ₯ π‘ π π₯ π‘ π 2 π . π π₯ 2 π‘ β πΏπ₯(π‘) πΏ π₯ (π‘) ππ‘ Say P which is a 2nx2n matrix as each 2nd derivative of V(.) is nxn matrix
17
Sufficient conditionβ¦
If π» 2 π½>0βπ>0 (+ππππππππ‘π) => functional value will be minimum =>J*(.) will be the minimum value along with the optimum trajectory x*(t) If π» 2 π½<0βπ<0 (βππππππππ‘π) => functional value will be maximum =>J*(.) will be the maximum value along with the optimum trajectory x*(t)
18
Example: (Using calculus of variation)
Example 1: Find the extremal for the functional π½= π‘ 0 =0 π‘ π 2 π₯ 2 π‘ +24π‘π₯ π‘ ππ‘ Where the left hand point (A) is fixed i.e. t0 =0 & x(t0) =0 And in right hand point (B) tf is free but x(tf) = 2
19
Example:β¦ Solution: This is following problem π . =2 π₯ 2 π‘ +24π‘π₯ π‘
π . =2 π₯ 2 π‘ +24π‘π₯ π‘ t0 tf t π₯(π‘) π‘ π +πΏ π‘ π π₯ β (π‘) π₯ π π‘ = π₯ β π‘ +πΏπ₯(π‘) π₯(π‘ π )=2
20
Example:β¦ E.L equation ππ . ππ₯ π‘ β π ππ‘ ππ . π π₯ π‘ = 0 1Γ1 (x is scalar variable) β24π‘β π ππ‘ 4 π₯ (π‘) =0 β24π‘β4 π₯ (π‘)=0 β π₯ (π‘)=6π‘ ---(1) Solving above equation, Integrating equ(1) π₯ π‘ ππ‘= 6π‘ππ‘ β π₯ π‘ =3 π‘ 2 + π (2) again integrating β π₯ π‘ ππ‘= 3 π‘ 2 + π 1 ππ‘ βπ₯ π‘ = π‘ 3 + π 1 π‘+ π (3)
21
Example:β¦ Put t=t0=0 in equation (3) π₯ π‘ =0= 0 3 + π 1 Γ0+ π 2
βπ 2 =0 put in equation (3) βπ₯ π‘ = π‘ 3 + π 1 π‘ ---(4) Put t=tf & π₯ π‘ π =2 in equation (4) π₯ π‘ π =2= π‘ π 3 + π 1 π‘ π βπ 1 = 2β π‘ π 3 π‘ π (5)
22
Example:β¦ Transversality condition: Here π‘ π is free, so
π£ . β ππ . π π₯ π‘ π π₯ (π‘) π‘= π‘ π =0 2 π₯ 2 π‘ +24π‘π₯ π‘ β(4 π₯ (π‘)) π₯ (π‘) π‘= π‘ π =0 dividing by 2 β π₯ 2 π‘ π +12 π‘ π π₯ π‘ π β2 π₯ 2 ( π‘ π ) β π₯ 2 π‘ π β12 π‘ π π₯ π‘ π =0 put value of π₯ (π‘) from equ(2) β 3 π‘ π 2 + π β12 π‘ π π₯ π‘ π =0 put π₯ π‘ π =2 β9 π‘ π 4 + π π‘ π 2 π 1 β24 π‘ π =0
23
Example:β¦ Put the value of π 1 = 2β π‘ π 3 π‘ π from equ (5) in previous equ β9 π‘ π β π‘ π 3 π‘ π π‘ π 2 2β π‘ π 3 π‘ π β24 π‘ π =0 βπ‘ π 6 β4 π‘ π 3 +1=0 Put π‘ π 3 =π§ π§ 2 β4π§+1=0 βπ§=2Β± 3 =3.732, β π‘ π = & β π‘ π =1.551 &
24
Example:β¦ For π‘ π =1.551 , π 1 = 2β π‘ π 3 π‘ π =β1.117 so
π₯ β π‘ = π‘ 3 + π 1 π‘= π‘ 3 β1.117π‘ ---(6) For π‘ π = , π 1 = 2β π‘ π 3 π‘ π =2.6871so π₯ β π‘ = π‘ 3 + π 1 π‘= π‘ π‘ --(7) There are two optimal trajectory given by (6) & (7), one will give minimum value other will give maximum value. For this apply sufficient condition
25
Example:β¦ sufficient condition
π= π 2 π . π π₯ 2 π‘ ππ . ππ₯ π‘ π π₯ π‘ ππ . ππ₯ π‘ π π₯ π‘ π 2 π . π π₯ 2 π‘ β If π>0 (+ππππππππ‘π) => functional J*(.) value will be minimum If π<0 (βππππππππ‘π) => functional J*(.) value will be maximum
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.