Download presentation
Presentation is loading. Please wait.
Published byClemence Collins Modified over 6 years ago
1
Lesson: Introduction to Trigonometry - Sine, Cosine, & Tangent
Unit 6: Trigonometry Lesson: Introduction to Trigonometry - Sine, Cosine, & Tangent
2
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
3
SOH -CAH -TOA Remember the Great Indian Chief:
Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
4
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
5
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
6
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
7
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
8
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
9
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
10
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
11
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
12
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
13
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
14
Intro to Trigonometry Goals: To use the sine, cosine, and tangent to solve problems involving right triangles. Essential Understandings: In a right triangle, the ratios of the lengths of the sides; hypotenuse, opposite leg, and adjacent leg, depends on the angle measures. If the right triangles are similar, these ratios will be equal. You can completely solve a right triangle knowing only the length of two sides, or one side and one acute angle.
15
Intro to Trigonometry Homework: Worksheet 9.5 Select Problems
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.