Download presentation
Presentation is loading. Please wait.
1
SPM2: Modelling and Inference
Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience, University College London, UK
2
What’s new in SPM2 ? Spatial transformation of images Batch Mode
Modelling and Inference
3
SPM99 fMRI time-series Kernel Design matrix
Inference with Gaussian field theory Statistical parametric map (SPM) Realignment Smoothing General linear model Normalisation Adjusted regional data spatial modes and effective connectivity Template Parameter estimates
4
What’s new in SPM2 ? Spatial transformation of images Batch Mode
Modelling and Inference Expectation-Maximisation (EM) Restricted Maximum Likelihood (ReML) Parametric Empirical Bayes (PEB)
5
Hierarchical models Parametric Hierarchical Empirical model
Bayes (PEB) Hierarchical model Restricted Maximimum Likelihood (ReML) Single-level model
6
Bayes Rule
7
Example 2:Univariate model
Likelihood and Prior Posterior Relative Precision Weighting
8
Example 2:Multivariate two-level model
Likelihood and Prior Data-determined parameters Assume diagonal precisions Posterior Precisions Assume Shrinkage Prior
9
Covariance constraints
General Case: Arbitrary error covariances Covariance constraints
10
General Case EM algorithm Friston, K. et al. (2002), Neuroimage ( ) å
E-Step ( ) y C X T 1 - = e q h M-Step r for i and j { } { Q tr J g i j ij k å + l Friston, K. et al. (2002), Neuroimage
11
Pooling assumption Decompose error covariance at each voxel, i, into
a voxel specific term, r(i), and voxel-wide terms.
12
What’s new in SPM2 ? Corrections for Non-Sphericity
Posterior Probability Maps (PPMs) Haemodynamic modelling Dynamic Causal Modelling (DCM)
13
Non-sphericity Relax assumption that errors are Independent and Identically Distributed (IID) Non-independent errors eg. repeated measures within subject Non-identical errors eg. unequal condition/subject error variances Correlation in fMRI time series Allows multiple parameters at 2nd level ie. RFX
14
Single-subject contrasts from Group FFX
PET Verbal Fluency SPMs,p<0.001 uncorrected Single-subject contrasts from Group FFX Non-identical error variances Sphericity Non-sphericity
15
Correlation in fMRI time series
Model errors for each subject as AR(1) + white noise.
16
The Interface PEB OLS Parameters Parameters, and REML Hyperparameters
No Priors Shrinkage priors
17
Bayesian estimation: Two-level model
1st level = within-voxel Likelihood Shrinkage Prior 2nd level = between-voxels
18
Bayesian Inference: Posterior Probability Maps
PPMs Posterior Likelihood Prior SPMs
19
SPMs and PPMs
20
Sensitivity
21
Spatio-temporal modelling of PET data
Simulated data Spatio-temporal modelling of PET data Real data (Word fluency)
22
The hemodynamic model
23
Hemodynamics
24
Inference with MISO models
fMRI study of attention to visual motion
25
Dynamical Causal Models
Functional integration and the modulation of specific pathways V1 V4 BA37 STG BA39 Cognitive set - u2(t) {e.g. semantic processing} Stimuli - u1(t) {e.g. visual words}
26
Extension to a MIMO system
The bilinear model neuronal changes intrinsic connectivity induced response Input u(t) activity x1(t) x3(t) x2(t) hemodynamics response y(t)=(X) Hemodynamic model
27
Dynamical systems theory
Connections {A,B,C} Inputs u(t) Kernels () Outputs y(t) EM algorithm E-Step M-Step Connectivity constraints C Inference p() > Bayesian Inference
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.