Download presentation
Presentation is loading. Please wait.
Published byFrank Lee Modified over 6 years ago
1
The Design Against Radiation Effects (DARE) design platform for TSMC 65nm process.
M. Kakoulin, S. Redant, G. Thys, S. Verhaegen, G. Franciscatto, B. Chehab, G. Pollissard, L. Berti AMICSA, 2018
2
DARE65 DARE65: RAD HARD DESIGN PLATFORM High-performance,
cost-effective RH space applications AIP STD cells lib, Memory IP & IO lib ADK (Electrical, LVS, DRC, RAD checks, SETsim) PROCESS (TSMC 65 nm CMOS) Sponsored by:
3
Commercial TSMC 65 nm LP process - CMN /CRN65LP
DARE65 THE DARE65 design platform: PROCESS Deep Nwell option RDL available for Flip-chip MOM or MIM capacitors Dual gate oxide process 1.2V (core)/2.5V(IO) Multiple VT (high VT, standard VT, low VT) 9 Cu metal layers + last metal layer in AL pad Regular MPW shuttle runs Cost effective for low volume MLM runs
4
DARE65 THE DARE65 design platform: Operating conditions & Hardness goal Parameter Min Typ Max Core voltage, V 1,08 1,2 1,32 IO voltage, V 2,25 2,5 2,75 Temperature, 0C -55 25 +125 TID, krad 100 300 SEL, MeV.cm2/mg 70
5
DARE65 THE DARE65 design platform: SEU, SET CAPABILITY goal Parameter
Min Typ Max High, MeV.cm2/mg 60 Medium, MeV.cm2/mg 25 Basic (non hardened), MeV.cm2/mg 1
6
65 nm process NMOS core transistor radiation results (RVt) [1]
DARE65 THE DARE65 design platform: Mitigation METHODS 65 nm process NMOS core transistor radiation results (RVt) [1] Threshold Drive current Leakage current 1 - Bonacini, P. Valerio, R. Avramidou, R. Ballabriga, F. Faccio, K. Kloukinas and A. Marchioro, 2012 JINST 7 P “Characterization of a commercial 65 nm CMOS technology for SLHC applications
7
DARE65 THE DARE65 design platform: Mitigation METHODS
No SEL is found at room temperature in all SRAM blocks at effective LET 60 MeVxcm2/mg [2]. The SEL occurs in “6T” block only at effective LET 60 MeVxcm2/mg and at high operating temperature [2]. Another test results shows the SEL effect in 65 nm commercial STD cells at even lower LET at high operating temperature (appr. LET 20 MeVxcm2/mg ) SEU cross-section LET dependence for SRAM blocks in 65 nm [2]. 2 - Maxim S. Gorbunov, Member, IEEE, Pavel S. Dolotov, Student Member, IEEE, Andrey A. Antonov, Gennady I. Zebrev, Vladimir V. Emeliyanov, Member, IEEE, Anna B. Boruzdina, Andrey G. Petrov, and Anastasia V. Ulanova (2004, August). Design of 65 nm CMOS SRAM for Space Applications: A Comparative Study.
8
DARE65 THE DARE65 design platform: Mitigation METHODS Factor TID
- No ELT transistors - Limits of the minimum core and IO NMOS and PMOS transistors gate width - 2 limitations are set: for digital designs and for analogue designs (larger W). - Deep N-well - Guard rings prevent leakage between N regions due to TID SEL - n+ and p+ guard rings connected to supply or ground voltages - double contact in source/drain areas of transistors SEU/SET Device spacing – to avoid “double hits” No Hot MOS (i.e. MOS where the bulk is not connected to GND or VDD). Drive Strength Hardening – especially to create SET hardened standard cells. SET filters DICE FF Bit alignment in SRAM blocks – to avoid MBU
9
DARE65 IMEC ADK Customer analogue IP design
THE DARE65 design platform: DARE65T_ADK – Design kit IMEC ADK Customer analogue IP design Schematic RH rules checks (script) Layout RH rules checks (Calibre) SET simulation environment (Striker & prober)
10
DARE65 THE DARE65 design platform: DARE65T_CORE - STD CELL Library
multi-VT (HVt, SVt, LVt) support digital/analogue-on-top & design flow support 12 track library – 0,2 um pitch SET & SEU hardened cells for clock & reset tree SET hardened combinational cells SEU hardened flipflops and latch (DICE) totally 102 cells raw gate density is 344 kGates/mm2 TSMC 9T SC library comparable performance Type N Non-SET hardened combinational cells 52 SET hardened combinational cells - 25 MeV... 7 SET hardened combinational cells - 40 MeV... SET hardened combinational cells - 60 MeV... Non-SET hardened sequential cells 9 SEU hardened sequential cells 2) 5 ANTENNA cells 1 TIEH and TIEL 2 Non-SEU hardened clock gating cells SEU hardened clock gating cells 3 Filler cells 8
11
DARE65 THE DARE65 design platform: DARE65T_CORE - STD CELL Library
DARE65T_CORE DICE and standard non-RH FF
12
DARE65 THE DARE65 design platform: DARE65T_IO – IO cell library
cold-spare feature programmable drive strength slew rate control programmable pull up/down uni / bidirectional 2 kV HBM supports 1,8/2,5V & 3,3 V supply voltage maximum supply voltage 3,63V breaker cells multi power domain support flip-chip support
13
DARE65 THE DARE65 design platform: DARE65T_IO – SSTL IO cell library
SSTL18 cells (RX_SE, RXTX_SE, RX_DIFF, RXTX_DIFF) 1.8V ± 5% supply voltage Defined in JESD8-15A, but visibly not updated and replaced by JESD79-2F (defines ODT, levels vs speed...), the DDR2 standard DDR2-800 support SSTL15 cells (RX_SE, RXTX_SE, RX_DIFF, RXTX_DIFF) 1.5V ± 5% supply voltage Definition embedded in standard of DDR3 (JESD79-3F) Impedance calibration support Configurable delay line DDR3-800 support
14
DARE65 THE DARE65 design platform: dare65t_lvds – lvds io CELL LIBRARY
DARE65T_LVDS transmitter and receiver IO cells based on 2,5 V overdrive 3,3 transistors 2,5 and 3,3 V voltage supply up to 400 Mbps (200 MHz)
15
DARE65 THE DARE65 design platform: DARE65T_SRAM – MEMORY
Custom cell, SEL free SPRAM compiler DPRAM instances DRAM custom cell: 1,9 x 2,75 um2 2 SRAM cells solutions: Conservative SRAM cell With intermittent guard ring, 1,5 times smaller The DARE65 SPRAM cell: 1,9 x 1,85 um2
16
DARE65 The DARE65 design platform: DARE65T – Analogue IP Analog IP
Main features DARE65T_PLL MHz output frequency 2,5-32 MHz reference frequency Supply voltage 1,2V. DARE65_IVREF 1,2V and 2,5 supply voltages 0,6V output reference voltage Reference current output Accuracy (before trimming) ± 2,5 % DARE65_ADC 10 bit resolution Integrated temperature sensor 10 kHz sampling rate. DARE65_POR TBD
17
DARE65 Test vehicle platform validation MS capability improvement
FURTHER work Test vehicle platform validation MS capability improvement SerDes: RapidIO, SpaceFiber DDR2/3 PHY High-speed ADC & DAC 3. Memory capability improvement OTP & MRAM memory
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.