Download presentation
Presentation is loading. Please wait.
1
Gas Laws 1
2
Gases Variable volume and shape Expand to occupy volume available
Volume, Pressure, Temperature, and the number of moles present are interrelated Can be easily compressed Exert pressure on whatever surrounds them Easily diffuse into one another 2
3
Mercury Barometer Used to define and measure atmospheric pressure
On the average at sea level the column of mercury rises to a height of about 760 mm. This quantity is equal to 1 atmosphere It is also known as standard atmospheric pressure 3
4
Pressure Units & Conversions
The above represent some of the more common units for measuring pressure. The standard SI unit is the Pascal or kilopascal. The US Weather Bureaus commonly report atmospheric pressures in inches of mercury. Pounds per square inch or PSI is widely used in the United States. Most other countries use only the metric system. 4
5
Boyle’s Law According to Boyle’s Law the pressure and volume of a gas are inversely proportional at constant temperature. PV = constant. P1V1 = P2V2 5
6
Boyle’s Law A graph of pressure and volume gives an inverse function
A graph of pressure and the reciprocal of volume gives a straight line Scheffler 6
7
Sample Problem 1: If the pressure of helium gas in a balloon has a volume of 4.00 dm3 at 210 kPa, what will the pressure be at 2.50 dm3? P1 V1 = P2 V2 (210 kPa) (4.00 dm3) = P2(2.50 dm3) P2 = (210 kPa) (4.00 dm3) (2.50 dm3) = 340 kPa 7
8
Charles’ Law According to Charles’ Law the volume of a gas is proportional to the Kelvin temperature as long as the pressure is constant V = kT Note: The temperature for gas laws must always be expressed in Kelvin where Kelvin = oC (or 273 to 3 significant digits) V1 = T1 V2 T2 8
9
Charles’ Law A graph of temperature and volume yields a straight line.
Where this line crosses the x axis (x intercept) is defined as absolute zero 9
10
Sample Problem 2 A gas sample at 40 oC occupies a volume of 2.32 dm3. If the temperature is increased to 75 oC, what will be the final volume? V1 = V2 T T2 Convert temperatures to Kelvin. 40oC = 313K 75oC = 348K 2.32 dm3 = V2 313 K K (313K)( V2) = (2.32 dm3)(348K) V2 = 2.58 dm3 10
11
Gay-Lussac’s Law P1 = P2 T2 T1
Gay-Lussac’s Law defines the relationship between pressure and temperature of a gas. The pressure and temperature of a gas are directly proportional. P = P2 T2 T1 11
12
Sample Problem 3: The pressure of a gas in a tank is 3.20 atm at 22 oC. If the temperature rises to 60oC, what will be the pressure in the tank? P1 = P2 T T2 Convert temperatures to Kelvin. 22oC = 295K 60oC = 333K 3.20 atm = P2 295 K K (295K)( P2) = (3.20 atm)(333K) P2 = 3.6 atm 12
13
The Combined Gas Law 1. If the amount of the gas is constant, then Boyle’s Charles’ and Gay-Lussac’s Laws can be combined into one relationship P1 V = P2 V2 T1 T2 13
14
Sample Problem 4: A gas at 110 kPa and 30 oC fills a container at 2.0 dm3. If the temperature rises to 80oC and the pressure increases to 440 kPa, what is the new volume? P1V1 = P2V2 T T2 Convert temperatures to Kelvin. 30oC = 303K 80oC = 353K V2 = V1 P1 T2 P2 T1 = (2.0 dm3) (110 kPa ) (353K) (440 kPa ) (303 K) V2 = 0.58 dm3 14
15
Avogadro’s Law Equal volumes of a gas under the same temperature and pressure contain the same number of particles. If the temperature and pressure are constant the volume of a gas is proportional to the number of moles of gas present V = constant * n where n is the number of moles of gas V/n = constant V1/n1 = constant = V2 /n2 V1/n1 = V2 /n2 15
16
Universal Gas Equation
Based on the previous laws there are four factors that define the quantity of gas: Volume, Pressure, Kelvin Temperature, and the number of moles of gas present (n). Putting these all together: PV nT = Constant = R The proportionality constant R is known as the universal gas constant. 16
17
Universal Gas Equation
The Universal gas equation is usually written as PV = nRT Where P = pressure V = volume T = Kelvin Temperature n = number of moles The numerical value of R depends on the pressure unit (and perhaps the energy unit) Some common values of R include: R = dm3 torr mol-1 K-1 = dm3 atm mol-1 K-1 = dm3kPa mol-1 K-1 17
18
Standard Temperature and Pressure (STP)
The volume of a gas varies with temperature and pressure. Therefore it is helpful to have a convenient reference point at which to compare gases. For this purpose standard temperature and pressure are defined as: Temperature = 0oC K Pressure = 1 atmosphere = torr = kPa This point is often called STP 18
19
Sample Problem 5 Example: What volume will 25.0 g O2 occupy
at 20oC and a pressure of atmospheres? : (25.0 g) n = = mol (32.0 g mol-1) Data Formula Calculation Answer V =? P = atm; T = ( )K = 293K R = dm-3 atm mol-1 K-1 PV = nRT so V = nRT/P V = (0.781 mol)( dm-3 atm mol-1 K-1)(293K) 0.880 atm V = 21.3 dm3 19
20
d is the density of the gas in g/L
Universal Gas Equation –Alternate Forms Density (d) Calculations = PM RT m is the mass of the gas in g m V d = M is the molar mass of the gas Molar Mass (M ) of a Gaseous Substance dRT P d is the density of the gas in g/L M = 20
21
Sample Problem 6 A 2.10 dm3 vessel contains 4.65 g of a gas at 1.00 atmospheres and 27.0oC. What is the molar mass of the gas? 21
22
Sample Problem 6 Solution
A 2.10 dm3 vessel contains 4.65 g of a gas at 1.00 atmospheres and 27.0oC. What is the molar mass of the gas? dRT P M = d = m V 4.65 g 2.10 dm3 = = 2.21 g dm3 2.21 g dm3 1 atm x x K dm3•atm mol•K M = M = 54.6 g/mol 22
23
Dalton’s Law of Partial Pressures
The total pressure of a mixture of gases is equal to the sum of the pressures of the individual gases (partial pressures). PT = P1 + P2 + P3 + P where PT = total pressure P1 = partial pressure of gas 1 P2 = partial pressure of gas 2 P3 = partial pressure of gas 3 P4 = partial pressure of gas 4 23
24
Dalton’s Law of Partial Pressures
Applies to a mixture of gases Very useful correction when collecting gases over water since they inevitably contain some water vapor. 24
25
Sample Problem 7 Henrietta Minkelspurg generates Hydrogen gas and collected it over water. If the volume of the gas is 250 cm3 and the barometric pressure is torr at 25oC, what is the pressure of the “dry” hydrogen gas at STP? (PH2O = 23.8 torr at 25oC) 25
26
Sample Problem 8 -- Solution
Henrietta Minkelspurg generates Hydrogen gas and collected it over water. If the volume of the gas is 250 cm3 and the barometric pressure is torr at 25oC, what is the pressure of the “dry” hydrogen gas at STP? (PH2O = 23.8 torr at 25oC) 26
27
Sample Problem 9 Henrietta Minkelspurg generated Hydrogen gas and collects it over water. If the volume of the gas is 250 cm3 and the barometric pressure is 765 torr at 25oC, what is the volume of the “dry” oxygen gas at STP? 27
28
Sample Problem 9 -- Solution
Henrietta Minkelspurg generated Hydrogen gas and collects it over water. If the volume of the gas is 250 cm3 and the barometric pressure is 765 torr at 25oC, what is the volume of the “dry” hydrogen gas at STP? From the previous calculation the adjusted pressure is torr P1= PH2 = torr; P2= Std Pressure = 760 torr V1= 250 cm3; T1= 298K; T2= 273K; V2= ? (V1P1/T1) = (V2P2/T2) therefore V2= (V1P1T2)/(T1P2) V2 = (250 cm3)(742.2 torr)(273K) (298K)(760.torr) V2 = cm3 28
29
Kinetic Molecular Theory
Matter consists of particles (atoms or molecules) that are in continuous, random, rapid motion The Volume occupied by the particles has a negligibly small effect on their behavior Collisions between particles are elastic Attractive forces between particles have a negligible effect on their behavior Gases have no fixed volume or shape, but take the volume and shape of the container The average kinetic energy of the particles is proportional to their Kelvin temperature 29
30
Diffusion Gas diffusion is the gradual mixing of molecules of one gas with molecules of another by virtue of their kinetic properties. NH4Cl NH3 17.0 g/mol HCl 36.5 g/mol 30
31
DIFFUSION AND EFFUSION
Diffusion is the gradual mixing of molecules of different gases. Effusion is the movement of molecules through a small hole into an empty container. fler 31
32
Graham’s Law Graham’s law governs effusion and diffusion of gas molecules. KE=1/2 mv2 The rate of effusion is inversely proportional to its molar mass. Thomas Graham, Professor in Glasgow and London. 32
33
Ideal Gases v Real Gases
Ideal gases are gases that obey the Kinetic Molecular Theory perfectly. The gas laws apply to ideal gases, but in reality there is no perfectly ideal gas. Under normal conditions of temperature and pressure many real gases approximate ideal gases. Under more extreme conditions more polar gases show deviations from ideal behavior. 33
34
In an Ideal Gas --- The particles (atoms or molecules) in continuous, random, rapid motion. The particles collide with no loss of momentum The volume occupied by the particles is essentially zero when compared to the volume of the container The particles are neither attracted to each other nor repelled The average kinetic energy of the particles is proportional to their Kelvin temperature At normal temperatures and pressures gases closely approximate idea behavior 34
35
Real Gases For ideal gases the product of pressure and volume is constant. Real gases deviate somewhat as shown by the graph pressure vs. the ratio of observed volume to ideal volume below. These deviations occur because Real gases do not actually have zero volume Polar gas particles do attract if compressed 35
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.