Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solving Quadratic Inequalities

Similar presentations


Presentation on theme: "Solving Quadratic Inequalities"— Presentation transcript:

1 Solving Quadratic Inequalities
5-7 Solving Quadratic Inequalities Warm Up Lesson Presentation Lesson Quiz Holt Algebra 2

2 1. Graph the inequality y < 2x + 1.
Warm Up 1. Graph the inequality y < 2x + 1. Solve using any method. 2. x2 – 16x + 63 = 0 7, 9 3. 3x2 + 8x = 3

3 Objectives Solve quadratic inequalities by using tables and graphs.
Solve quadratic inequalities by using algebra.

4 Vocabulary quadratic inequality in two variables

5 Many business profits can be modeled by quadratic functions
Many business profits can be modeled by quadratic functions. To ensure that the profit is above a certain level, financial planners may need to graph and solve quadratic inequalities. A quadratic inequality in two variables can be written in one of the following forms, where a, b, and c are real numbers and a ≠ 0. Its solution set is a set of ordered pairs (x, y).

6 y < ax2 + bx + c y > ax2 + bx + c
In Lesson 2-5, you solved linear inequalities in two variables by graphing. You can use a similar procedure to graph quadratic inequalities.

7 Example 1: Graphing Quadratic Inequalities in Two Variables
Graph y ≥ x2 – 7x + 10. Step 1 Graph the boundary of the related parabola y = x2 – 7x + 10 with a solid curve. Its y-intercept is 10, its vertex is (3.5, –2.25), and its x-intercepts are 2 and 5.

8 Example 1 Continued Step 2 Shade above the parabola because the solution consists of y-values greater than those on the parabola for corresponding x-values.

9 Example 1 Continued Check Use a test point to verify the solution region. y ≥ x2 – 7x + 10 0 ≥ (4)2 –7(4) + 10 Try (4, 0). 0 ≥ 16 – 0 ≥ –2

10 Check It Out! Example 1a Graph the inequality. y ≥ 2x2 – 5x – 2 Step 1 Graph the boundary of the related parabola y = 2x2 – 5x – 2 with a solid curve. Its y-intercept is –2, its vertex is (1.3, –5.1), and its x-intercepts are –0.4 and 2.9.

11 Check It Out! Example 1a Continued
Step 2 Shade above the parabola because the solution consists of y-values greater than those on the parabola for corresponding x-values.

12 Check It Out! Example 1a Continued
Check Use a test point to verify the solution region. y < 2x2 – 5x – 2 0 ≥ 2(2)2 – 5(2) – 2 Try (2, 0). 0 ≥ 8 – 10 – 2 0 ≥ –4

13 Check It Out! Example 1b Graph each inequality. y < –3x2 – 6x – 7 Step 1 Graph the boundary of the related parabola y = –3x2 – 6x – 7 with a dashed curve. Its y-intercept is –7.

14 Check It Out! Example 1b Continued
Step 2 Shade below the parabola because the solution consists of y-values less than those on the parabola for corresponding x-values.

15 Check It Out! Example 1b Continued
Check Use a test point to verify the solution region. y < –3x2 – 6x –7 –10 < –3(–2)2 – 6(–2) – 7 Try (–2, –10). –10 < – – 7 –10 < –7

16 Quadratic inequalities in one variable, such as ax2 + bx + c > 0 (a ≠ 0), have solutions in one variable that are graphed on a number line. For and statements, both of the conditions must be true. For or statements, at least one of the conditions must be true. Reading Math

17 Example 3: Solving Quadratic Equations by Using Algebra
Solve the inequality x2 – 10x + 18 ≤ –3 by using algebra. Step 1 Write the related equation. x2 – 10x + 18 = –3

18 Example 3 Continued Step 2 Solve the equation for x to find the critical values. x2 –10x + 21 = 0 Write in standard form. (x – 3)(x – 7) = 0 Factor. x – 3 = 0 or x – 7 = 0 Zero Product Property. x = 3 or x = 7 Solve for x. The critical values are 3 and 7. The critical values divide the number line into three intervals: x ≤ 3, 3 ≤ x ≤ 7, x ≥ 7.

19 Step 3 Test an x-value in each interval.
Example 3 Continued Step 3 Test an x-value in each interval. –3 –2 – Critical values Test points x2 – 10x + 18 ≤ –3 (2)2 – 10(2) + 18 ≤ –3 Try x = 2. x (4)2 – 10(4) + 18 ≤ –3 Try x = 4. (8)2 – 10(8) + 18 ≤ –3 x Try x = 8.

20 Example 3 Continued Shade the solution regions on the number line. Use solid circles for the critical values because the inequality contains them. The solution is 3 ≤ x ≤ 7 or [3, 7]. –3 –2 –

21 Check It Out! Example 3a Solve the inequality by using algebra. x2 – 6x + 10 ≥ 2 Step 1 Write the related equation. x2 – 6x + 10 = 2

22 Check It Out! Example 3a Continued
Step 2 Solve the equation for x to find the critical values. x2 – 6x + 8 = 0 Write in standard form. (x – 2)(x – 4) = 0 Factor. x – 2 = 0 or x – 4 = 0 Zero Product Property. x = 2 or x = 4 Solve for x. The critical values are 2 and 4. The critical values divide the number line into three intervals: x ≤ 2, 2 ≤ x ≤ 4, x ≥ 4.

23 Check It Out! Example 3a Continued
Step 3 Test an x-value in each interval. –3 –2 – Critical values Test points x2 – 6x + 10 ≥ 2 (1)2 – 6(1) + 10 ≥ 2 Try x = 1. (3)2 – 6(3) + 10 ≥ 2 x Try x = 3. (5)2 – 6(5) + 10 ≥ 2 Try x = 5.

24 Check It Out! Example 3a Continued
Shade the solution regions on the number line. Use solid circles for the critical values because the inequality contains them. The solution is x ≤ 2 or x ≥ 4. –3 –2 –

25 Check It Out! Example 3b Solve the inequality by using algebra. –2x2 + 3x + 7 < 2 Step 1 Write the related equation. –2x2 + 3x + 7 = 2

26 Check It Out! Example 3b Continued
Step 2 Solve the equation for x to find the critical values. –2x2 + 3x + 5 = 0 Write in standard form. (–2x + 5)(x + 1) = 0 Factor. –2x + 5 = 0 or x + 1 = 0 Zero Product Property. x = 2.5 or x = –1 Solve for x. The critical values are 2.5 and –1. The critical values divide the number line into three intervals: x < –1, –1 < x < 2.5, x > 2.5.

27 Check It Out! Example 3b Continued
Step 3 Test an x-value in each interval. –3 –2 – Critical values Test points –2x2 + 3x + 7 < 2 –2(–2)2 + 3(–2) + 7 < 2 Try x = –2. –2(1)2 + 3(1) + 7 < 2 x Try x = 1. –2(3)2 + 3(3) + 7 < 2 Try x = 3.

28 Check It Out! Example 3 Shade the solution regions on the number line. Use open circles for the critical values because the inequality does not contain or equal to. The solution is x < –1 or x > 2.5. –3 –2 –

29 Lesson Quiz: Part I 1. Graph y ≤ x2 + 9x + 14. Solve each inequality. 2. x2 + 12x + 39 ≥ 12 x ≤ –9 or x ≥ –3 3. x2 – 24 ≤ 5x –3 ≤ x ≤ 8

30 Lesson Quiz: Part II 4. A boat operator wants to offer tours of San Francisco Bay. His profit P for a trip can be modeled by P(x) = –2x x – 788, where x is the cost per ticket. What range of ticket prices will generate a profit of at least $500? between $14 and $46, inclusive


Download ppt "Solving Quadratic Inequalities"

Similar presentations


Ads by Google