Download presentation
Presentation is loading. Please wait.
1
Rigid Diatomic molecule
I = r = m1m2/(m1+m2) B (MHz) = /I (u Å 2) B (cm-1) = /I (u A2) Harry Kroto 2004
2
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… Harry Kroto 2004
3
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 1 2B Harry Kroto 2004
4
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 2 6B 1 2B Harry Kroto 2004
5
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 3 12B 2 6B 1 2B Harry Kroto 2004
6
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
7
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
8
Rotational Spectroscopy of Linear Molecules
F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
9
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 0 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
10
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
11
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
12
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
13
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
14
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
15
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
16
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
17
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
18
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 6 42B 5 30B 4 20B 3 12B 2 6B 1 2B Harry Kroto 2004
19
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F (J) = 2B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
20
B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
21
Rotational Spectroscopy of Linear Molecules
J 7 56B F(J) = BJ(J+1) 2B 6B 12B 20B 30B… F(J) = 2B(J+1) 2B 4B 6B 8B 10B 12B… 14B 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B Harry Kroto 2004
22
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
23
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
24
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
26
My ABC System of Spectroscopy
Harry Kroto 2004
27
Nuclear Energies H + H E(r) Chemical Energies r v=3 2 1
r Harry Kroto 2004
28
Rotational Spectroscopy
Harry Kroto 2004
29
Nuclear Energies H + H E(r) Chemical Energies Rotational levels r
r Harry Kroto 2004
30
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
31
m2 m1 Rotational Spectra Linear Molecules Rigid Diatomic molecule
E = ½I2 Rigid Diatomic molecule Angular velocity m2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004
32
Rotational Energy Linear Diatomic Molecules
Rigid Diatomic molecule Angular velocity m2 Rotational Energy Linear Diatomic Molecules E = ½I2 m1 I = r2 = m1m2/(m1+m2) Harry Kroto 2004
33
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
34
Rotational Spectra Linear Molecules
E = ½I2 J2/2I (J = I ) E = ½ mv2 p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004
35
Rotational Spectra Linear Molecules
E = ½I2 J2/2I (J = I ) E = ½ mv2 p2/2m (p = mv) H = J2/2I (Note V= 0) Harry Kroto 2004
36
H = J2/2I J J2 J = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J J* J2 Jd Harry Kroto 2004
37
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
38
H = J2/2I J J2 J = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J J* J2 Jd Harry Kroto 2004
39
H = J2/2I J J2 J = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J J* J2 Jd Harry Kroto 2004
40
H = J2/2I J J2 J = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J J* J2 Jd Harry Kroto 2004
41
H = J2/2I J J2 J = ħ2 J(J+1) E(J) = (ħ2/2I) J(J+1)
F(J) = B J(J+1) B = ħ2/h2I MHz B = ħ2/hc2I cm-1 J J2 J J* J2 Jd Harry Kroto 2004
42
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
43
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
44
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
45
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
46
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
47
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
48
Radiotelescope in Canada
Harry Kroto 2004
49
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
50
B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J
F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004
51
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
52
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
53
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
54
Harry Kroto 2004
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.