Download presentation
Presentation is loading. Please wait.
Published byPiers Jordan Modified over 5 years ago
1
This is the far infra red spectrum of the diatomic molecule CO
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å.
2
I = μro2 μ = m1m2/(m1+m2) Io (uÅ2) = 16.863/ Bo(cm-1)
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å. I = μro2 μ = m1m2/(m1+m2) Io (uÅ2) = / Bo(cm-1) Assume C has mass and O mass 16.0
3
I = μro2 μ = m1m2/(m1+m2) Io (uÅ2) = 16.863/ Bo(cm-1)
This is the far infra red spectrum of the diatomic molecule CO. It is due to absorption by pure rotational transitions of this molecule. Measure the line frequencies as accurately as possible and thus determine the Bo value and from this calculate a bond length in Å. I = μro2 μ = m1m2/(m1+m2) Io (uÅ2) = / Bo(cm-1) Assume C has mass and O mass 16.0 NB The subscript o indicates that Bo, Io and ro are for the v=0 vibrational state
4
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
5
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
6
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
7
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
8
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
9
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
10
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
11
Rotational Spectroscopy of Linear Molecules
J 7 56B 6 42B 2B 4B 6B 8B 10B 12B… 5 30B 4 20B 3 12B 2 6B 1 2B
12
J+1 J Harry Kroto 2004
13
J+1 J Harry Kroto 2004
14
J+1 BJ(J+1) J Harry Kroto 2004
15
B(J+1)(J+2) J+1 BJ(J+1) J Harry Kroto 2004
16
B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
17
Rotational Spectroscopy of Linear Molecules
J 7 56B 14B 6 42B 2B 4B 6B 8B 10B 12B… 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B
18
B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
19
Absorption B(J+1)(J+2) J+1 BJ(J+1) J F(J) = 2B(J+1) Harry Kroto 2004
21
5 10 J= 12 15 20B Harry Kroto 2004
22
Line separations 2B Harry Kroto 2004
23
J=5 J=15 20B Line separations 2B Harry Kroto 2004
24
Rotational Spectroscopy of Linear Molecules
J 7 56B 14B 6 42B 12B 5 30B 10B 4 20B 8B 3 12B 6B 2 6B 4B 1 2B 2B
26
cm-1
28
61.35 ±cm-1
29
Approximately 61.5 – 23 = 38.5 cm-1 = 20B
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B Harry Kroto 2004
30
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 Harry Kroto 2004
31
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B Harry Kroto 2004
32
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B I = 8.76 uA I = r2 Harry Kroto 2004
33
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B I = 8.76 uA I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 Harry Kroto 2004
34
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B I = 8.76 uA I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = = r2 Harry Kroto 2004
35
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B I = 8.76 uA I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = Ǻ ( acc B value 1.921) Harry Kroto 2004
37
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 B = / I I = / B I = 8.76 uA I = r2 = m1m2/(m1+m2) = 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
38
A Classical Description > E = T + V E = ½I2 V=0
B QM description > the Hamiltonian H J = E J H = J2/2I C Solve the Hamiltonian > Energy Levels F (J) = BJ(J+1) D Selection Rules > Allowed Transitions J = ±1 E Transition Frequencies > F B(J+1) F Intensities > THE SPECTRUM J Analysis > Pattern recognition; assign J numbers H Experimental Details > microwave spectrometers I More Advanced Details: Centrifugal distortion, spin effect J Information obtainable: structures, dipole moments etc Harry Kroto 2004
39
B(J+1)(J+2) – D(J+1)2(J+2)2 J+1 BJ(J+1) – DJ2(J+1)2 J
F(J) = 2B(J+1) – 4D(J+1)3 Harry Kroto 2004
41
Far infrared rotational spectrum of CO J= 12 15 20B
10 Far infrared rotational spectrum of CO J= 12 15 20B 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 B = / I I = / B I = 8.76 uA2 I = r2 = m1m2/(m1+m2)= 16x12/28 = 6.86 8.76/6.86 = = r2 r = 1.277½ = A ( acc B value 1.921) Harry Kroto 2004
42
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( Harry Kroto 2004
43
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1
J= 12 23.0 cm-1 61.5 cm-1 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 50/3.85 = = 13 so line at 50cm-1 is J=12 Harry Kroto 2004
44
Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = 3.85 B = 1.925 cm-1 (
10 15 Line separations 2B Approximately 61.5 – 23 = 38.5 cm-1 = 20B 2B = B = cm-1 ( 50/3.85 = = 13 so line at 50cm-1 is J=12 Harry Kroto 2004
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.