Download presentation
Presentation is loading. Please wait.
1
A topological approach to watersheds
G. Bertrand Laboratoire A2SI, ESIEE Paris 27/05/2003
2
To our knowledge there is no framework in which general properties for watersheds can be derived
Our goal is to show that the topological approach proposed previously* provides such a framework *M. Couprie and G. Bertrand (1997) Paris 27/05/2003
3
Watersheds Powerful segmentation operator from the field of Mathematical Morphology Introduced as a tool for segmenting grayscale images by S. Beucher, H. Digabel and C. Lantuejoul in the 70s Efficient algorithms based on flooding simulation were proposed by F. Meyer, P. Soille, L. Vincent (and others) in the 90s Paris 27/05/2003
4
Flooding paradigm Paris 27/05/2003
5
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
6
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 15 1 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 15 1 20 15 1 10 5 1 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 There is no descending path from the 20s to the minimum 3 The contrast between minima is not preserved Paris 27/05/2003
7
Discrete sets and destructible points
Let G = (V,E) be a (undirected) graph and let X be a subset of V. We say that a point x X is destructible for X if x is adjacent to exactly one connected component of X. M. Couprie and G. Bertrand (1997) Paris 27/05/2003
8
Destructible point Paris 27/05/2003
9
Destructible point Paris 27/05/2003
10
Destructible point Paris 27/05/2003
11
Destructible point Paris 27/05/2003
12
Destructible point Paris 27/05/2003
13
Destructible point Paris 27/05/2003
14
Destructible point Paris 27/05/2003
15
Destructible point Paris 27/05/2003
16
Destructible point Paris 27/05/2003
17
Destructible point Paris 27/05/2003
18
Discrete maps and destructible points
Let G = (V,E) be a connected (undirected) graph. We denote by F (V) the family composed of all maps from V to Z. Let F F (V), we set Fk = {x V; F(x) k}, Fk is the cross-section of F at level k Let x V and let k = F(x). We say that x is destructible (for F) if x is adjacent to exactly one connected component of Fk M. Couprie and G. Bertrand (1997) Paris 27/05/2003
19
Topological watershed
Let F and F’ be in F (V). We say that F’ is a thinning of F if F’ may be obtained from F by iteratively lowering destructible points (by 1). Let F and F’ be in F (V). We say that F’ is a watershed of F if F’ is a thinning of F and if there is no destructible point for F’. M. Couprie and G. Bertrand (1997) Paris 27/05/2003
20
Collapsing paradigm Paris 27/05/2003
21
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
22
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 1 20 30 3 3 3 40 40 30 30 30 1 1 20 30 30 30 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 The watershed is located on the crest lines of the original image The contrast between minima is preserved Paris 27/05/2003
23
Pass value Let F be in F (V). If п is a path, we set F(п) = Max{F(x); x п}. Let x, y in V. We set F(x,y) = Min {F(п); п п(x,y)}, F(x,y) is the pass value between x and y. Let X and Y be two subsets of V. We set F(X,Y) = Min{F(x,y); x X and y Y}. Paris 27/05/2003
24
Separation Let F be in F (V) and let x and y be in V. We say that x and y are separated (for F) if F(x,y) > Max{F(x),F(y)}. We say that x and y are k-separated (for F) if x and y are separated and F(x,y) = k. Let F and F’ be in F (V) such that F’ F. We say that F’ is a separation of F if, for all x,y in V, if x and y are k-separated for F, then x and y are k-separated for F’. Paris 27/05/2003
25
k-separation y x x and y are 20-separated 40 40 40 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
26
x and y are NOT separated (they are linked)
k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
27
Theorem (restriction to minima)
Let F and F’ be in F (V) such that F’ F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Paris 27/05/2003
28
Theorem (strong separation)
Let F and F’ be in F (V) such that F’ F. The map F’ is a thinning of F if and only if F’ is a strong separation of F. Paris 27/05/2003
29
2D case Any connected object without hole reduces to one point
Paris 27/05/2003
30
Bing’s house with two rooms
3D case Some connected objects without holes and cavities DO NOT reduce to one point Bing’s house with two rooms Paris 27/05/2003
31
Theorem (restriction to minima)
Let F and F’ be in F (V) such that F’ F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Paris 27/05/2003
32
Theorem (restriction to minima)
Let F and F’ be in F (V) such that F’ F. The map F’ is a separation of F if and only if, for all distinct minima X,Y for F, F(X,Y) = F’(X,Y). Is it possible to reduce the amount of information necessary to encode the "topology" of a thinning? Paris 27/05/2003
33
Ordered minima Let F be in F (V). A minima ordering (for F) is a strict total order relation < on the minima of F. Let X be a minimum for F. The pass value of X for (F,<) is the number F(X,<) such that: i) if X = Xmin, then F(X,<) = infinity; ii) otherwise, F(X,<) = Min {F(X,Y); for all minima Y such that Y < X}. Paris 27/05/2003
34
Ordered minima F(.,<)=8 5 3 2 F(.,<)=22 F(.,<)=30 1 4
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=22 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=infty F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
35
Theorem (ordered minima)
Let F and F’ be in F (V) such that F’ <= F and let < be a minima ordering for F. The map F’ is a separation of F if and only if, for each minimum X for F, we have F(X,<) = F’(X,<). Paris 27/05/2003
36
<-map F(.,<)=8 5 3 2 F(.,<)=22 F(.,<)=30 1 4 F(.,<)=0
40 40 40 40 40 40 40 40 40 40 40 40 40 5 40 3 1 1 2 3 10 5 25 5 4 4 4 40 2 40 1 2 8 6 5 5 20 3 2 3 40 F(.,<)=22 40 3 3 2 3 10 6 6 6 22 2 3 F(.,<)=30 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 1 4 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 F(.,<)=0 F(.,<)=31 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
37
Theorem (reconstruction from ordered pass values)
Let F be in F (V) and let < be a minima ordering for F. Let T be a tree associated to F(X,<). The pass values between all minima of F may be reconstructed from T. Paris 27/05/2003
38
Dynamics (M. Grimaud,1992) Let X be a minimum for F Let G(X) be the number such that: i) if X = Xmin, then G(X) = infinity; ii) otherwise, G(X) = Min {F(X,Y); for all minima Y such that F(Y) < F(X)}. The dynamics of a minimum X is the number Dyn(X) = G(X) – F(X) Paris 27/05/2003
39
Ordered dynamics The notion of ordered pass values leads to a new definition of the dynamics of a minimum: Dyn(X; F, <) = F(X, <) – F(X) This new definition of dynamics fully agrees with the notion of separation. Paris 27/05/2003
40
Dynamics: counter-example
Paris 27/05/2003
41
Dynamics: counter-example
Paris 27/05/2003
42
Ordered minima 2 3 1 Paris 27/05/2003
43
Conclusion Basins, component tree Duality: minimum spanning trees
Comparison of existing algorithms (L. Najman and M. Couprie) Algorithmic issues (M. Couprie and L. Najman) Saliency (L. Najman) Paris 27/05/2003
44
Results of watershed algorithms
4 5 B 6 3 1 C 2 Topographical 3 4 5 6 2 1 Original image A B 6 1 C 3 5 Vincent-Soille, Meyer and Topological Paris 27/05/2003
45
Results of watershed algorithms
30 3 31 4 255 2 1 5 30 C 31 D E A 255 B F Original image Vincent-Soille 30 C E D A 255 B F 30 C 31 D 255 A E B F Meyer Topological Paris 27/05/2003
46
Results of watershed algorithms
2 1 30 20 40 A B 1 C 20 40 Original image Vincent-Soille A B 1 20 40 A A A A A A 1 A A A 30 30 30 A A 1 A 30 B 20 A 30 A 1 40 B B 20 A A 40 B B B 20 A A 1 A B B B 20 A A A B B 1 B 20 1 A A 1 A Paris 27/05/2003 Meyer Topological
47
Homotopy: an illustration
F(x,y) G(x,y) F1 G1 x x Paris 27/05/2003
48
Homotopy: an illustration
F(x,y) G(x,y) x x F2 G2 F1 G1 Paris 27/05/2003
49
Watershed transform Paris 27/05/2003
50
Flooding paradigm Paris 27/05/2003
51
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
52
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 1 15 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 5 1 40 40 1 3 5 10 15 1 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
53
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
54
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
55
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
56
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
57
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
58
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
59
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
60
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
61
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 1 10 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 15 1 10 1 5 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
62
Flooding paradigm 40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 15 1 20 40 40 3 3 5 5 30 30 30 10 1 15 15 20 40 40 3 3 5 30 20 20 20 30 15 1 1 15 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 15 1 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 There is no descending path from the 20s to the minimum 3 Any path from 0 to the minimum 3 must climb at least at 30 Paris 27/05/2003
63
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
64
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
65
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 1 20 40 40 3 3 5 5 30 30 30 10 15 1 15 1 20 40 40 3 3 5 30 20 20 20 30 15 1 15 1 20 1 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 10 1 10 1 10 1 40 40 5 5 5 10 40 20 40 10 10 1 5 5 1 40 40 1 3 5 10 1 15 20 1 15 10 1 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 1 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
66
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 1 5 40 40 1 3 5 10 1 15 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
67
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 5 5 5 10 10 10 1 10 1 15 20 1 40 40 3 3 5 5 30 30 30 10 15 1 15 20 1 40 40 3 3 5 30 20 20 20 30 15 1 1 15 1 20 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 10 10 10 40 20 20 20 40 1 10 1 10 10 1 40 40 5 5 5 10 40 20 40 10 10 5 1 1 5 40 40 1 3 5 10 1 15 20 1 15 10 5 1 1 1 40 40 1 3 5 10 15 20 15 10 5 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
68
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
69
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
70
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
71
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
72
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
73
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
74
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 40 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
75
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
76
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
77
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
78
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
79
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 20 20 20 30 3 3 3 40 40 40 40 40 40 20 20 20 40 40 40 40 40 40 1 1 1 40 20 20 20 40 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
80
Topological watershed
40 40 40 40 40 40 40 40 40 40 40 40 40 40 3 3 3 3 3 3 3 3 3 3 3 40 40 3 3 3 3 30 30 30 3 3 3 3 40 40 3 3 3 30 1 20 30 3 3 3 40 40 30 30 30 1 1 20 30 30 30 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 1 1 1 1 1 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 The watershed is located on the crest lines of the original image The contrast between minima is preserved Paris 27/05/2003
81
k-separation y x x and y are 8-separated 40 40 40 40 40 40 40 40 40 40
1 1 2 3 10 5 25 5 4 4 4 40 x y 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
82
x and y are NOT separated (they are linked)
k-separation x and y are NOT separated (they are linked) 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 x y 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
83
Homotopic thinning Paris 27/05/2003
84
Homotopic thinning Paris 27/05/2003
85
Homotopic thinning Paris 27/05/2003
86
Homotopic thinning Paris 27/05/2003
87
Homotopic thinning Paris 27/05/2003
88
Homotopic thinning Paris 27/05/2003
89
Homotopic thinning Paris 27/05/2003
90
Homotopic thinning Paris 27/05/2003
91
Homotopic thinning Paris 27/05/2003
92
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
93
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
94
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003
95
Pass value 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 3 10 5 25 5 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 40 6 6 40 6 11 11 11 25 4 4 4 40 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 F(X,Y) = 31 Paris 27/05/2003
96
Pass value 20 40 40 40 40 40 40 40 40 40 40 40 40 40 40 1 1 2 8 3 10 5 25 5 20 4 4 4 40 40 1 2 8 6 5 5 20 3 2 3 40 40 3 3 2 3 10 6 6 6 22 2 3 40 30 31 40 6 6 40 6 11 11 11 25 4 4 4 40 31 30 40 40 35 10 30 15 15 15 35 31 36 10 40 40 10 8 5 10 32 33 34 10 10 15 38 40 40 8 5 1 1 15 40 10 6 3 15 20 40 40 10 8 5 10 15 35 15 6 6 15 35 40 40 40 40 40 40 40 40 40 40 40 40 40 40 Paris 27/05/2003 31
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.