Presentation is loading. Please wait.

Presentation is loading. Please wait.

Daisuke Miyazaki Katsushi Ikeuchi The University of Tokyo

Similar presentations


Presentation on theme: "Daisuke Miyazaki Katsushi Ikeuchi The University of Tokyo"— Presentation transcript:

1 Daisuke Miyazaki Katsushi Ikeuchi The University of Tokyo
Polarization-based Shape Estimation of Transparent Objects for Digitizing Cultural Assets Daisuke Miyazaki Katsushi Ikeuchi The University of Tokyo

2 Objective Estimate 3D shape of transparent object
Introduction(1/3) Polarization raytracing(7) Shape estimation(6) Experiment(5) Conclusion(2) Objective Estimate 3D shape of transparent object Analyze the polarization phenomena Polarization analysis Virtual transparent object Real transparent object

3 Application fields Modeling cultural assets 3D catalog in web site
Introduction(2/3) Polarization raytracing(7) Shape estimation(6) Experiment(5) Conclusion(2) Application fields Modeling cultural assets 3D catalog in web site Manufacturing robot Object recognition to recycle

4 Methods developed in this project
Introduction(3/3) Polarization raytracing(7) Shape estimation(6) Experiment(5) Conclusion(2) Methods developed in this project Previous project Miyazaki et al. 2004 Miyazaki et al. 2002 Today’s talk

5 Polarization raytracing(1/7)
Introduction(3) Polarization raytracing(1/7) Shape estimation(6) Experiment(5) Conclusion(2) Polarization Light = wave  oscillates Oscillates in certain direction  polarization DOP = degree of polarization Partially polarized (DOP 0~1) Incident Reflected Air Object Transmitted Unpolarized (DOP 0) Light Perfectly polarized (DOP 1) Polarizer

6 Reflection and transmission
Introduction(3) Polarization raytracing(2/7) Shape estimation(6) Experiment(5) Conclusion(2) Reflection and transmission Normal Depends upon Light Partially polarized Unpolarized Air Object Partially polarized

7 Polarization raytracing(3/7)
Introduction(3) Polarization raytracing(3/7) Shape estimation(6) Experiment(5) Conclusion(2) Tracing the light rays Calculate reflection and transmission

8 Polarization raytracing
Introduction(3) Polarization raytracing(4/7) Shape estimation(6) Experiment(5) Conclusion(2) Polarization raytracing Ray tracing Ray tracing Calculate intensity Calculate polarization Conventional raytracing Polarization raytracing

9 Polarization raytracing(5/7)
Introduction(3) Polarization raytracing(5/7) Shape estimation(6) Experiment(5) Conclusion(2) Mueller calculus Conventional raytracing Intensity: Scalar Reflectivity&transmissivity: Scalar Polarization raytracing Polarization state: 4D vector Reflection&transmisstion matrix: 4x4 matrix

10 Example of Mueller calculus
Introduction(3) Polarization raytracing(6/7) Shape estimation(6) Experiment(5) Conclusion(2) Example of Mueller calculus Conventional raytracing Reflected intensity reflectivity incident intensity Scalar Scalar Scalar Polarization raytracing Reflection vector reflection matrix incidence vector

11 Polarization raytracing(7/7)
Introduction(3) Polarization raytracing(7/7) Shape estimation(6) Experiment(5) Conclusion(2) Example of matrices Reflection Transmission Rotation Phase shift

12 Shape estimation Iterative computation with updating the shape
Introduction(3) Polarization raytracing(7) Shape estimation(1/6) Experiment(5) Conclusion(2) Shape estimation Iterative computation with updating the shape Initial shape Caculated DOP with polarization raytracing 2 min Input DOP (degree of polarization) Final shape

13 Error function Input Calculated Relationship between normal & height
Introduction(3) Polarization raytracing(7) Shape estimation(2/6) Experiment(5) Conclusion(2) Error function Input Calculated Relationship between normal & height min dxdy Calculate height and normal

14 Calculate normal from shape
Introduction(3) Polarization raytracing(7) Shape estimation(3/6) Experiment(5) Conclusion(2) Calculate normal from shape Set initial height H properly Calculate gradient p&q by differentiating height H

15 Polarization raytracing(7)
Introduction(3) Polarization raytracing(7) Shape estimation(4/6) Experiment(5) Conclusion(2) Update normal Input DOP Light ray Object Calculated DOP Change normal Ray changes Error

16 Calculate height from normal
Introduction(3) Polarization raytracing(7) Shape estimation(5/6) Experiment(5) Conclusion(2) Calculate height from normal Updated normal Relaxation method Calculated height

17 Polarization raytracing(7)
Introduction(3) Polarization raytracing(7) Shape estimation(6/6) Experiment(5) Conclusion(2) Algorithm overview Initial height Normal from height Minimize 2 Input Calc. Update normal Output height is small enough 2 Input Calc. Stop when Height from normal

18 Experimental setup Monochrome camera Camera adapter Computer
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(1/5) Conclusion(2) Experimental setup Camera adapter Computer Monochrome camera IR/UV cut-off filter Linear polarizer Geodesic dome Polarizer controller Transparent object inside 40W lamp Plastic sphere

19 Simulational result Initial 25 loop Initial 20 loop
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(2/5) Conclusion(2) Simulational result Initial 25 loop Initial 20 loop Frontal shape(estimated) Refractive index 1.5 & Illumination (known) Frontal shape(truth) Rear shape(known)

20 Polarization raytracing(7)
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(3/5) Conclusion(2) Experimental result Acrylic hemisphere Refractive index 1.5 Diameter 30mm Error(height):0.61mm Error(normal):7.0 Initial (previous method) 50 loop Error(height):2.8mm Error(normal):14 Initial (previous method) 10 loop 3000 50 25 1500 Error/loop

21 Polarization raytracing(7)
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(4/5) Conclusion(2) Experimental result Initial 5 loop 50 loop Acrylic object Diameter(base)24mm Refractive index 1.5 Error(height) 0.24mm

22 Experimental result Glass(refractive index 1.5) 10 loop
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(5/5) Conclusion(2) Experimental result Glass(refractive index 1.5) 10 loop Initial(previous method)

23 Summary Polarization raytracing Iteration Initial shape
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(5) Conclusion(1/2) Summary Polarization raytracing Iteration Initial shape Calculated polarization data 2 min Input polarization data Object Shape

24 Future work for another project
Introduction(3) Polarization raytracing(7) Shape estimation(6) Experiment(5) Conclusion(2/2) Future work for another project Realtime measurement Commercial product ? Estimating refractive index Modeling cultural assets

25 Supported by Japan Science and Technology Agency
Thank you Supported by Japan Science and Technology Agency Special thanks to Interfaculty Initiative in Information Studies, The University of Tokyo

26 Daisuke Miyazaki 2005 Creative Commons Attribution 4
Daisuke Miyazaki 2005 Creative Commons Attribution 4.0 International License. Daisuke Miyazaki, Katsushi Ikeuchi, "Polarization-based Shape Estimation of Transparent Objects for Digitizing Cultural Assets," in Proceedings of International Symposium on the CREST Digital Archiving Project, pp , Tokyo, Japan,


Download ppt "Daisuke Miyazaki Katsushi Ikeuchi The University of Tokyo"

Similar presentations


Ads by Google