Presentation is loading. Please wait.

Presentation is loading. Please wait.

Approximating distributions

Similar presentations


Presentation on theme: "Approximating distributions"— Presentation transcript:

1 Approximating distributions
Binomial distribution Approximating distributions Normal distribution Poisson distribution Approximating distributions: Nannestad

2 Approximating distributions: Nannestad
Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad

3 Approximating the binomial distribution with a normal distribution
has discrete data and looks like Normal has continuous data and looks like f 0.15 0.1 0.05 x 2 4 6 8 10 12 Approximating distributions: Nannestad

4 Approximating distributions: Nannestad
Why bother? Tables are not readily available for large values of n. When n is large, and p is not too close to either 0 or 1, then the binomial values are reasonably symmetrical. In these conditions, the normal curve closely fits the binomial values. Approximating distributions: Nannestad

5 Approximating distributions: Nannestad
How do we approximate a binomial distribution with a normal distribution? The mean of a binomial distribution with n terms and probability p is np, and the variance is np(1-p). Use these values as the mean and variance for a normal distribution. Approximating distributions: Nannestad

6 When is the normal approximation “good enough”?
Look at the following examples. When is the normal curve “close enough” to the binomial distribution? Approximating distributions: Nannestad

7 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.10 Normal: mean = 1.50, VAR = 1.35 f Binomial: n = 15, p = 0.10 0.3 Normal: mean = 1.50, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

8 Approximating distributions: Nannestad
Binomial: n = 15, p = 0. 15 Normal: mean = 2.25, VAR = 1.91 f Binomial: n = 15, p = 0.15 0.3 Normal: mean = 2.25, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

9 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.20 Normal: mean = 3.00, VAR = 2.40 f Binomial: n = 15, p = 0.20 0.3 Normal: mean = 3.00, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

10 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.25 Normal: mean = 3.75, VAR = 2.81 f Binomial: n = 15, p = 0.25 0.3 Normal: mean = 3.75, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

11 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.30 Normal: mean = 4.50, VAR = 3.15 f Binomial: n = 15, p = 0.30 0.3 Normal: mean = 4.50, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

12 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.35 Normal: mean = 5.25, VAR = 3.41 f Binomial: n = 15, p = 0.35 0.3 Normal: mean = 5.25, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

13 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.40 Normal: mean = 6.00, VAR = 3.60 f Binomial: n = 15, p = 0.40 0.3 Normal: mean = 6.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

14 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.45 Normal: mean = 6.75, VAR = 3.71 f Binomial: n = 15, p = 0.45 0.3 Normal: mean = 6.75, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

15 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.50 Normal: mean = 7.50, VAR = 3.75 f Binomial: n = 15, p = 0.50 0.3 Normal: mean = 7.50, VAR = 3.75 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

16 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.55 Normal: mean = 8.25, VAR = 3.71 f Binomial: n = 15, p = 0.55 0.3 Normal: mean = 8.25, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

17 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.60 Normal: mean = 9.00, VAR = 3.60 f Binomial: n = 15, p = 0.60 0.3 Normal: mean = 9.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

18 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.65 Normal: mean = 9.75, VAR = 3.41 f Binomial: n = 15, p = 0.65 0.3 Normal: mean = 9.75, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

19 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.70 Normal: mean = 10.5, VAR = 3.15 f Binomial: n = 15, p = 0.70 0.3 Normal: mean = 10.5, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

20 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.75 Normal: mean = 11.3, VAR = 2.81 f Binomial: n = 15, p = 0.75 0.3 Normal: mean = 11.3, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

21 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.80 Normal: mean = 12.0, VAR = 2.40 f Binomial: n = 15, p = 0.80 0.3 Normal: mean = 12.0, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

22 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.85 Normal: mean = 12.8, VAR = 1.91 f Binomial: n = 15, p = 0.85 0.3 Normal: mean = 12.8, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

23 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.90 Normal: mean = 13.5, VAR = 1.35 f Binomial: n = 15, p = 0.90 0.3 Normal: mean = 13.5, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

24 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.95 Normal: mean = 14.3, VAR = 0.71 f Binomial: n = 15, p = 0.95 0.3 Normal: mean = 14.3, VAR = 0.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad

25 Approximating distributions: Nannestad
General guidelines We can approximate the binomial distribution with n terms and probability p with the corresponding normal distribution when both np5, and n(1-p)5. Approximating distributions: Nannestad

26 Approximating distributions: Nannestad
For the example with n = 15 and p changes by 0.05 each time, this would require p values 0.35  p  0.65 Approximating distributions: Nannestad

27 What happens to the values when we change from discrete data to continuous data?
In a binomial distribution we can have a probability for a single value. Example: For binomial n = 15, p = 0.40, P(X=4) = However, it is not possible to have proability for a single value in normal distribution. Example: Normal: mean = 6.00, VAR = 3.60, P(X=4) cannot exist. Why? Approximating distributions: Nannestad

28 The probability is calculated from the area under the normal curve.
For the area to be other than zero we need to find the probability between two values Approximating distributions: Nannestad

29 Continuity correction
When approximating a discrete distribution with one that is continuous we must apply a continuity correction. Original binomial distribution n = 30, p = 0.7     The value for P(X = 20) in the binomial distribution Approximating distributions: Nannestad

30 Approximating distributions: Nannestad
Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad

31 Approximating distributions: Nannestad
Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad

32 Approximating distributions: Nannestad
When the binomial value for n is large and p is very small the event is considered “rare” and we can approximate values with the Poisson distribution. Approximating distributions: Nannestad

33 Approximating the binomial distribution with a poisson distribution
has discrete data and looks like Poisson has disctrete data and looks like f 0.3 0.2 0.1 x Approximating distributions: Nannestad 2 4 6 8 10

34 Approximating distributions: Nannestad
When? Why? How? When the value of p is too small for the tables, the probability of the event occuring is becoming “rare”. (np < 5 is a fair guide.) Binomial tables do not give the required values. Using np = , the binomial distribution values are approximated by the Poisson distribution. Approximating distributions: Nannestad

35 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.005 Poisson:  = 0.075 f 1 0.8 Binomial: n = 15, p = 0.005 Poisson: lamda = 0.075 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

36 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.010 Poisson:  = 0.150 f 1 0.8 Binomial: n = 15, p = 0.010 Poisson: lamda = 0.150 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

37 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.015 Poisson:  = 0.225 f 1 0.8 Binomial: n = 15, p = 0.015 Poisson: lamda = 0.225 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

38 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.020 Poisson:  = 0.300 f 1 0.8 Binomial: n = 15, p = 0.020 Poisson: lamda = 0.300 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

39 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.025 Poisson:  = 0.375 f 1 0.8 Binomial: n = 15, p = 0.025 Poisson: lamda = 0.375 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

40 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.030 Poisson:  = 0.450 f 1 0.8 Binomial: n = 15, p = 0.030 Poisson: lamda = 0.450 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

41 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.035 Poisson:  = 0.525 f 1 0.8 Binomial: n = 15, p = 0.035 Poisson: lamda = 0.525 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

42 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.040 Poisson:  = 0.600 f 1 0.8 Binomial: n = 15, p = 0.040 Poisson: lamda = 0.600 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

43 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.045 Poisson:  = 0.675 f 1 0.8 Binomial: n = 15, p = 0.045 Poisson: lamda = 0.675 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

44 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.050 Poisson:  = 0.750 f 1 0.8 Binomial: n = 15, p = 0.050 Poisson: lamda = 0.750 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

45 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.055 Poisson:  = 0.825 f 1 0.8 Binomial: n = 15, p = 0.055 Poisson: lamda = 0.825 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

46 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.060 Poisson:  = 0.900 f 1 0.8 Binomial: n = 15, p = 0.060 Poisson: lamda = 0.900 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

47 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.065 Poisson:  = 0.975 f 1 0.8 Binomial: n = 15, p = 0.065 Poisson: lamda = 0.975 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

48 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.070 Poisson:  = 1.050 f 1 0.8 Binomial: n = 15, p = 0.070 Poisson: lamda = 1.050 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

49 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.075 Poisson:  = 1.125 f 1 0.8 Binomial: n = 15, p = 0.075 Poisson: lamda = 1.125 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

50 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.080 Poisson:  = 1.200 f 1 0.8 Binomial: n = 15, p = 0.080 Poisson: lamda = 1.200 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

51 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.085 Poisson:  = 1.275 f 1 0.8 Binomial: n = 15, p = 0.085 Poisson: lamda = 1.275 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

52 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.090 Poisson:  = 1.350 f 1 0.8 Binomial: n = 15, p = 0.090 Poisson: lamda = 1.350 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

53 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.095 Poisson:  = 1.425 f 1 0.8 Binomial: n = 15, p = 0.095 Poisson: lamda = 1.425 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

54 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.100 Poisson:  = 1.500 f 1 0.8 Binomial: n = 15, p = 0.100 Poisson: lamda = 1.500 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

55 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.15 Poisson:  = 2.25 f 1 0.8 Binomial: n = 15, p = 0.15 Poisson: lamda = 2.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

56 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.20 Poisson:  = 3.00 f 1 0.8 Binomial: n = 15, p = 0.20 Poisson: lamda = 3.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

57 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.25 Poisson:  = 3.75 f 1 0.8 Binomial: n = 15, p = 0.25 Poisson: lamda = 3.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

58 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.30 Poisson:  = 4.50 f 1 0.8 Binomial: n = 15, p = 0.30 Poisson: lamda = 4.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

59 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.35 Poisson:  = 5.25 f 1 0.8 Binomial: n = 15, p = 0.35 Poisson: lamda = 5.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

60 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.40 Poisson:  = 6.00 f 1 0.8 Binomial: n = 15, p = 0.40 Poisson: lamda = 6.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

61 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.45 Poisson:  = 6.75 f 1 0.8 Binomial: n = 15, p = 0.45 Poisson: lamda = 6.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

62 Approximating distributions: Nannestad
Binomial: n = 15, p = 0. 50 Poisson:  = 7.50 f 1 0.8 Binomial: n = 15, p = 0.50 Poisson: lamda = 7.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

63 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.55 Poisson:  = 8.25 f 1 0.8 Binomial: n = 15, p = 0.55 Poisson: lamda = 8.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

64 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.60 Poisson:  = 9.00 f 1 0.8 Binomial: n = 15, p = 0.60 Poisson: lamda = 9.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

65 Approximating distributions: Nannestad
Binomial: n = 15, p = 0.65 Poisson:  = 9.75 f 1 0.8 Binomial: n = 15, p = 0.65 Poisson: lamda = 9.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad

66 Approximating distributions: Nannestad
Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad

67 Approximating distributions: Nannestad
Poisson to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad

68 Approximating the Poisson distribution with a normal distribution
has discrete data and looks like Normal has continuous data and looks like 0.2 f 0.2 f 0.15 0.15 0.1 0.1 0.05 0.05 x x 5 10 15 20 5 10 15 20 Approximating distributions: Nannestad

69 Approximating distributions: Nannestad
Why? When n is large and  >20 the poisson distribution is closely approximated by the normal distribution. This is a reason tables do not have  values bigger than 20. Approximating distributions: Nannestad

70 Approximating distributions: Nannestad
Poisson:  = 9.00 Normal: mean = 12.8, VAR = 1.91 f . 1 5 . 1 . 5 x 1 2 Approximating distributions: Nannestad

71 Continuity correction
Approximating distributions: Nannestad

72 Approximating distributions: Nannestad
How? Approximating distributions: Nannestad

73 Approximating distributions: Nannestad
Poisson:  = 10 Normal: mean = 10, VAR = 10 . 2 f . 1 5 . 1 . 5 x 5 1 1 5 2 Approximating distributions: Nannestad

74 Approximating distributions: Nannestad
Drawing a normal curve with mean = variance = 9, and drawing the Poisson and normal distributions together allows comparison. Approximating distributions: Nannestad

75 Approximating distributions: Nannestad

76 Approximating distributions: Nannestad
Poisson:  = 9 Normal: mean = 9, VAR = 9 0.2 f 0.15 0.1 0.05 x 5 10 15 20 Approximating distributions: Nannestad

77 Approximating distributions: Nannestad
For this value of  = 9 the approximation of a normal curve (mean = variance = 9) is not close, so in this case we would use values from the Poisson table. Approximating distributions: Nannestad

78 Approximating distributions: Nannestad

79 Approximating distributions: Nannestad
Why? When n is large and  >20 the Poisson distribution is closely approximated by values from the normal distribution. This is a reason tables do not have  values bigger than 20. Approximating distributions: Nannestad

80 Approximating distributions: Nannestad
Consider how close the normal curve is to the Poisson values as  increases. When n is large and  >20 the Poisson distribution is closely approximated by the normal distribution. Approximating distributions: Nannestad

81 Approximating distributions: Nannestad
Poisson:  = 5 Normal: mean = 5, VAR = 5 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

82 Approximating distributions: Nannestad
Poisson:  = 10 Normal: mean = 10, VAR = 10 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

83 Approximating distributions: Nannestad
Poisson:  = 15 Normal: mean = 15, VAR = 15 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

84 Approximating distributions: Nannestad
Poisson:  = 16 Normal: mean = 16, VAR = 16 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

85 Approximating distributions: Nannestad
Poisson:  = 17 Normal: mean = 17, VAR = 17 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

86 Approximating distributions: Nannestad
Poisson:  = 18 Normal: mean = 18, VAR = 18 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

87 Approximating distributions: Nannestad
Poisson:  = 19 Normal: mean = 19, VAR = 19 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

88 Approximating distributions: Nannestad
Poisson:  = 20 Normal: mean = 20, VAR = 20 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

89 Approximating distributions: Nannestad
Poisson:  = 21 Normal: mean = 21, VAR = 21 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

90 Approximating distributions: Nannestad
Poisson:  = 22 Normal: mean = 22, VAR = 22 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

91 Approximating distributions: Nannestad
Poisson:  = 23 Normal: mean = 23, VAR = 23 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

92 Approximating distributions: Nannestad
Poisson:  = 24 Normal: mean = 24, VAR = 24 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

93 Approximating distributions: Nannestad
Poisson:  = 25 Normal: mean = 25, VAR = 25 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad

94 Approximating distributions: Nannestad
Poisson:  = 25 Normal: mean = 25, VAR = 25 0.1 f Change scale 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad

95 Approximating distributions: Nannestad
Poisson:  = 30 Normal: mean = 30, VAR = 30 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad

96 Approximating distributions: Nannestad
Poisson:  = 35 Normal: mean = 35, VAR = 35 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad

97 Approximating distributions: Nannestad
Poisson:  = 40 Normal: mean = 40, VAR = 40 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad

98 Approximating distributions: Nannestad
Poisson:  = 40 Normal: mean = 40, VAR = 40 0.1 f Change scale again 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad

99 Approximating distributions: Nannestad
Poisson:  = 50 Normal: mean = 50, VAR = 50 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad

100 Approximating distributions: Nannestad
Poisson:  = 75 Normal: mean = 75, VAR = 75 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad

101 Approximating distributions: Nannestad
Summary: when can we? Binomial distribution Normal distribution Poisson distribution np  5 and n(1-p)  5 p is too small for the tables n large  > 20 Approximating distributions: Nannestad

102 Approximating distributions: Nannestad
Summary: how do we? Binomial distribution Normal distribution  = np Poisson distribution Approximating distributions: Nannestad

103 Approximating distributions: Nannestad
The end. Approximating distributions: Nannestad


Download ppt "Approximating distributions"

Similar presentations


Ads by Google