Download presentation
Presentation is loading. Please wait.
1
Approximating distributions
Binomial distribution Approximating distributions Normal distribution Poisson distribution Approximating distributions: Nannestad
2
Approximating distributions: Nannestad
Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
3
Approximating the binomial distribution with a normal distribution
has discrete data and looks like Normal has continuous data and looks like f 0.15 0.1 0.05 x 2 4 6 8 10 12 Approximating distributions: Nannestad
4
Approximating distributions: Nannestad
Why bother? Tables are not readily available for large values of n. When n is large, and p is not too close to either 0 or 1, then the binomial values are reasonably symmetrical. In these conditions, the normal curve closely fits the binomial values. Approximating distributions: Nannestad
5
Approximating distributions: Nannestad
How do we approximate a binomial distribution with a normal distribution? The mean of a binomial distribution with n terms and probability p is np, and the variance is np(1-p). Use these values as the mean and variance for a normal distribution. Approximating distributions: Nannestad
6
When is the normal approximation “good enough”?
Look at the following examples. When is the normal curve “close enough” to the binomial distribution? Approximating distributions: Nannestad
7
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.10 Normal: mean = 1.50, VAR = 1.35 f Binomial: n = 15, p = 0.10 0.3 Normal: mean = 1.50, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
8
Approximating distributions: Nannestad
Binomial: n = 15, p = 0. 15 Normal: mean = 2.25, VAR = 1.91 f Binomial: n = 15, p = 0.15 0.3 Normal: mean = 2.25, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
9
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.20 Normal: mean = 3.00, VAR = 2.40 f Binomial: n = 15, p = 0.20 0.3 Normal: mean = 3.00, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
10
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.25 Normal: mean = 3.75, VAR = 2.81 f Binomial: n = 15, p = 0.25 0.3 Normal: mean = 3.75, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
11
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.30 Normal: mean = 4.50, VAR = 3.15 f Binomial: n = 15, p = 0.30 0.3 Normal: mean = 4.50, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
12
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.35 Normal: mean = 5.25, VAR = 3.41 f Binomial: n = 15, p = 0.35 0.3 Normal: mean = 5.25, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
13
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.40 Normal: mean = 6.00, VAR = 3.60 f Binomial: n = 15, p = 0.40 0.3 Normal: mean = 6.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
14
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.45 Normal: mean = 6.75, VAR = 3.71 f Binomial: n = 15, p = 0.45 0.3 Normal: mean = 6.75, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
15
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.50 Normal: mean = 7.50, VAR = 3.75 f Binomial: n = 15, p = 0.50 0.3 Normal: mean = 7.50, VAR = 3.75 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
16
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.55 Normal: mean = 8.25, VAR = 3.71 f Binomial: n = 15, p = 0.55 0.3 Normal: mean = 8.25, VAR = 3.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
17
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.60 Normal: mean = 9.00, VAR = 3.60 f Binomial: n = 15, p = 0.60 0.3 Normal: mean = 9.00, VAR = 3.60 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
18
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.65 Normal: mean = 9.75, VAR = 3.41 f Binomial: n = 15, p = 0.65 0.3 Normal: mean = 9.75, VAR = 3.41 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
19
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.70 Normal: mean = 10.5, VAR = 3.15 f Binomial: n = 15, p = 0.70 0.3 Normal: mean = 10.5, VAR = 3.15 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
20
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.75 Normal: mean = 11.3, VAR = 2.81 f Binomial: n = 15, p = 0.75 0.3 Normal: mean = 11.3, VAR = 2.81 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
21
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.80 Normal: mean = 12.0, VAR = 2.40 f Binomial: n = 15, p = 0.80 0.3 Normal: mean = 12.0, VAR = 2.40 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
22
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.85 Normal: mean = 12.8, VAR = 1.91 f Binomial: n = 15, p = 0.85 0.3 Normal: mean = 12.8, VAR = 1.91 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
23
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.90 Normal: mean = 13.5, VAR = 1.35 f Binomial: n = 15, p = 0.90 0.3 Normal: mean = 13.5, VAR = 1.35 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
24
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.95 Normal: mean = 14.3, VAR = 0.71 f Binomial: n = 15, p = 0.95 0.3 Normal: mean = 14.3, VAR = 0.71 0.2 0.1 x 5 10 15 20 Approximating distributions: Nannestad
25
Approximating distributions: Nannestad
General guidelines We can approximate the binomial distribution with n terms and probability p with the corresponding normal distribution when both np5, and n(1-p)5. Approximating distributions: Nannestad
26
Approximating distributions: Nannestad
For the example with n = 15 and p changes by 0.05 each time, this would require p values 0.35 p 0.65 Approximating distributions: Nannestad
27
What happens to the values when we change from discrete data to continuous data?
In a binomial distribution we can have a probability for a single value. Example: For binomial n = 15, p = 0.40, P(X=4) = However, it is not possible to have proability for a single value in normal distribution. Example: Normal: mean = 6.00, VAR = 3.60, P(X=4) cannot exist. Why? Approximating distributions: Nannestad
28
The probability is calculated from the area under the normal curve.
For the area to be other than zero we need to find the probability between two values Approximating distributions: Nannestad
29
Continuity correction
When approximating a discrete distribution with one that is continuous we must apply a continuity correction. Original binomial distribution n = 30, p = 0.7 The value for P(X = 20) in the binomial distribution Approximating distributions: Nannestad
30
Approximating distributions: Nannestad
Binomial to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
31
Approximating distributions: Nannestad
Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
32
Approximating distributions: Nannestad
When the binomial value for n is large and p is very small the event is considered “rare” and we can approximate values with the Poisson distribution. Approximating distributions: Nannestad
33
Approximating the binomial distribution with a poisson distribution
has discrete data and looks like Poisson has disctrete data and looks like f 0.3 0.2 0.1 x Approximating distributions: Nannestad 2 4 6 8 10
34
Approximating distributions: Nannestad
When? Why? How? When the value of p is too small for the tables, the probability of the event occuring is becoming “rare”. (np < 5 is a fair guide.) Binomial tables do not give the required values. Using np = , the binomial distribution values are approximated by the Poisson distribution. Approximating distributions: Nannestad
35
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.005 Poisson: = 0.075 f 1 0.8 Binomial: n = 15, p = 0.005 Poisson: lamda = 0.075 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
36
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.010 Poisson: = 0.150 f 1 0.8 Binomial: n = 15, p = 0.010 Poisson: lamda = 0.150 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
37
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.015 Poisson: = 0.225 f 1 0.8 Binomial: n = 15, p = 0.015 Poisson: lamda = 0.225 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
38
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.020 Poisson: = 0.300 f 1 0.8 Binomial: n = 15, p = 0.020 Poisson: lamda = 0.300 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
39
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.025 Poisson: = 0.375 f 1 0.8 Binomial: n = 15, p = 0.025 Poisson: lamda = 0.375 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
40
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.030 Poisson: = 0.450 f 1 0.8 Binomial: n = 15, p = 0.030 Poisson: lamda = 0.450 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
41
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.035 Poisson: = 0.525 f 1 0.8 Binomial: n = 15, p = 0.035 Poisson: lamda = 0.525 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
42
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.040 Poisson: = 0.600 f 1 0.8 Binomial: n = 15, p = 0.040 Poisson: lamda = 0.600 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
43
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.045 Poisson: = 0.675 f 1 0.8 Binomial: n = 15, p = 0.045 Poisson: lamda = 0.675 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
44
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.050 Poisson: = 0.750 f 1 0.8 Binomial: n = 15, p = 0.050 Poisson: lamda = 0.750 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
45
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.055 Poisson: = 0.825 f 1 0.8 Binomial: n = 15, p = 0.055 Poisson: lamda = 0.825 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
46
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.060 Poisson: = 0.900 f 1 0.8 Binomial: n = 15, p = 0.060 Poisson: lamda = 0.900 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
47
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.065 Poisson: = 0.975 f 1 0.8 Binomial: n = 15, p = 0.065 Poisson: lamda = 0.975 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
48
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.070 Poisson: = 1.050 f 1 0.8 Binomial: n = 15, p = 0.070 Poisson: lamda = 1.050 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
49
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.075 Poisson: = 1.125 f 1 0.8 Binomial: n = 15, p = 0.075 Poisson: lamda = 1.125 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
50
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.080 Poisson: = 1.200 f 1 0.8 Binomial: n = 15, p = 0.080 Poisson: lamda = 1.200 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
51
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.085 Poisson: = 1.275 f 1 0.8 Binomial: n = 15, p = 0.085 Poisson: lamda = 1.275 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
52
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.090 Poisson: = 1.350 f 1 0.8 Binomial: n = 15, p = 0.090 Poisson: lamda = 1.350 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
53
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.095 Poisson: = 1.425 f 1 0.8 Binomial: n = 15, p = 0.095 Poisson: lamda = 1.425 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
54
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.100 Poisson: = 1.500 f 1 0.8 Binomial: n = 15, p = 0.100 Poisson: lamda = 1.500 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
55
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.15 Poisson: = 2.25 f 1 0.8 Binomial: n = 15, p = 0.15 Poisson: lamda = 2.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
56
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.20 Poisson: = 3.00 f 1 0.8 Binomial: n = 15, p = 0.20 Poisson: lamda = 3.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
57
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.25 Poisson: = 3.75 f 1 0.8 Binomial: n = 15, p = 0.25 Poisson: lamda = 3.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
58
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.30 Poisson: = 4.50 f 1 0.8 Binomial: n = 15, p = 0.30 Poisson: lamda = 4.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
59
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.35 Poisson: = 5.25 f 1 0.8 Binomial: n = 15, p = 0.35 Poisson: lamda = 5.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
60
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.40 Poisson: = 6.00 f 1 0.8 Binomial: n = 15, p = 0.40 Poisson: lamda = 6.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
61
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.45 Poisson: = 6.75 f 1 0.8 Binomial: n = 15, p = 0.45 Poisson: lamda = 6.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
62
Approximating distributions: Nannestad
Binomial: n = 15, p = 0. 50 Poisson: = 7.50 f 1 0.8 Binomial: n = 15, p = 0.50 Poisson: lamda = 7.50 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
63
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.55 Poisson: = 8.25 f 1 0.8 Binomial: n = 15, p = 0.55 Poisson: lamda = 8.25 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
64
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.60 Poisson: = 9.00 f 1 0.8 Binomial: n = 15, p = 0.60 Poisson: lamda = 9.00 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
65
Approximating distributions: Nannestad
Binomial: n = 15, p = 0.65 Poisson: = 9.75 f 1 0.8 Binomial: n = 15, p = 0.65 Poisson: lamda = 9.75 0.6 0.4 0.2 x 2 4 6 8 10 Approximating distributions: Nannestad
66
Approximating distributions: Nannestad
Binomial to Poisson Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
67
Approximating distributions: Nannestad
Poisson to Normal Binomial distribution Normal distribution Poisson distribution Approximating distributions: Nannestad
68
Approximating the Poisson distribution with a normal distribution
has discrete data and looks like Normal has continuous data and looks like 0.2 f 0.2 f 0.15 0.15 0.1 0.1 0.05 0.05 x x 5 10 15 20 5 10 15 20 Approximating distributions: Nannestad
69
Approximating distributions: Nannestad
Why? When n is large and >20 the poisson distribution is closely approximated by the normal distribution. This is a reason tables do not have values bigger than 20. Approximating distributions: Nannestad
70
Approximating distributions: Nannestad
Poisson: = 9.00 Normal: mean = 12.8, VAR = 1.91 f . 1 5 . 1 . 5 x 1 2 Approximating distributions: Nannestad
71
Continuity correction
Approximating distributions: Nannestad
72
Approximating distributions: Nannestad
How? Approximating distributions: Nannestad
73
Approximating distributions: Nannestad
Poisson: = 10 Normal: mean = 10, VAR = 10 . 2 f . 1 5 . 1 . 5 x 5 1 1 5 2 Approximating distributions: Nannestad
74
Approximating distributions: Nannestad
Drawing a normal curve with mean = variance = 9, and drawing the Poisson and normal distributions together allows comparison. Approximating distributions: Nannestad
75
Approximating distributions: Nannestad
76
Approximating distributions: Nannestad
Poisson: = 9 Normal: mean = 9, VAR = 9 0.2 f 0.15 0.1 0.05 x 5 10 15 20 Approximating distributions: Nannestad
77
Approximating distributions: Nannestad
For this value of = 9 the approximation of a normal curve (mean = variance = 9) is not close, so in this case we would use values from the Poisson table. Approximating distributions: Nannestad
78
Approximating distributions: Nannestad
79
Approximating distributions: Nannestad
Why? When n is large and >20 the Poisson distribution is closely approximated by values from the normal distribution. This is a reason tables do not have values bigger than 20. Approximating distributions: Nannestad
80
Approximating distributions: Nannestad
Consider how close the normal curve is to the Poisson values as increases. When n is large and >20 the Poisson distribution is closely approximated by the normal distribution. Approximating distributions: Nannestad
81
Approximating distributions: Nannestad
Poisson: = 5 Normal: mean = 5, VAR = 5 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
82
Approximating distributions: Nannestad
Poisson: = 10 Normal: mean = 10, VAR = 10 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
83
Approximating distributions: Nannestad
Poisson: = 15 Normal: mean = 15, VAR = 15 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
84
Approximating distributions: Nannestad
Poisson: = 16 Normal: mean = 16, VAR = 16 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
85
Approximating distributions: Nannestad
Poisson: = 17 Normal: mean = 17, VAR = 17 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
86
Approximating distributions: Nannestad
Poisson: = 18 Normal: mean = 18, VAR = 18 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
87
Approximating distributions: Nannestad
Poisson: = 19 Normal: mean = 19, VAR = 19 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
88
Approximating distributions: Nannestad
Poisson: = 20 Normal: mean = 20, VAR = 20 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
89
Approximating distributions: Nannestad
Poisson: = 21 Normal: mean = 21, VAR = 21 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
90
Approximating distributions: Nannestad
Poisson: = 22 Normal: mean = 22, VAR = 22 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
91
Approximating distributions: Nannestad
Poisson: = 23 Normal: mean = 23, VAR = 23 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
92
Approximating distributions: Nannestad
Poisson: = 24 Normal: mean = 24, VAR = 24 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
93
Approximating distributions: Nannestad
Poisson: = 25 Normal: mean = 25, VAR = 25 0.2 f 0.15 0.1 0.05 x 10 20 30 Approximating distributions: Nannestad
94
Approximating distributions: Nannestad
Poisson: = 25 Normal: mean = 25, VAR = 25 0.1 f Change scale 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
95
Approximating distributions: Nannestad
Poisson: = 30 Normal: mean = 30, VAR = 30 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
96
Approximating distributions: Nannestad
Poisson: = 35 Normal: mean = 35, VAR = 35 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
97
Approximating distributions: Nannestad
Poisson: = 40 Normal: mean = 40, VAR = 40 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 Approximating distributions: Nannestad
98
Approximating distributions: Nannestad
Poisson: = 40 Normal: mean = 40, VAR = 40 0.1 f Change scale again 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
99
Approximating distributions: Nannestad
Poisson: = 50 Normal: mean = 50, VAR = 50 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
100
Approximating distributions: Nannestad
Poisson: = 75 Normal: mean = 75, VAR = 75 0.1 f 0.08 0.06 0.04 0.02 x 10 20 30 40 50 60 70 80 90 100 Approximating distributions: Nannestad
101
Approximating distributions: Nannestad
Summary: when can we? Binomial distribution Normal distribution Poisson distribution np 5 and n(1-p) 5 p is too small for the tables n large > 20 Approximating distributions: Nannestad
102
Approximating distributions: Nannestad
Summary: how do we? Binomial distribution Normal distribution = np Poisson distribution Approximating distributions: Nannestad
103
Approximating distributions: Nannestad
The end. Approximating distributions: Nannestad
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.