Presentation is loading. Please wait.

Presentation is loading. Please wait.

GCSE: Tangents To Circles

Similar presentations


Presentation on theme: "GCSE: Tangents To Circles"β€” Presentation transcript:

1 GCSE: Tangents To Circles
Dr J Frost Last modified: 18th February 2017

2 Example Here is a circle with equation π‘₯ 2 + 𝑦 2 =25. Determine the equation of the tangent of the circle at the point 𝑃 3,4 . 5 𝑃 3,4 π‘₯ -5 5 As always, to get an equation of a line we need: A point (we have that!) The gradient. -5 There’s only ONE thing you need to remember for this topic, related to finding the gradient of the tangent: ? ! The tangent is perpendicular to the radius.

3 Example Here is a circle with equation π‘₯ 2 + 𝑦 2 =25. Determine the equation of the tangent of the circle at the point 𝑃 3,4 . 𝑃 3,4 π‘₯ -5 5 Gradient of radius: πŸ’ πŸ‘ Gradient of tangent: βˆ’ πŸ‘ πŸ’ Equation of tangent so far: 𝑦=βˆ’ 3 4 π‘₯+𝑐 At 𝑷: 4=βˆ’ 3 4 Γ—3+𝑐 =βˆ’ 9 4 +𝑐 𝑐= β†’ 𝑦=βˆ’ 3 4 π‘₯+ 25 4 ? Radius goes through 0,0 and 3,4 so use π‘š= π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 𝑦 π‘β„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘₯ ? -5 ? Use negative reciprocal for perpendicular gradient. ? We know 𝑃 3,4 is a point on the line so substitute into equation to find 𝑐.

4 Further Example Here is a circle with equation π‘₯ 2 + 𝑦 2 =100. The tangent at the point 𝑃 8,6 cuts the π‘₯-axis at the point 𝐴. Determine the area of triangle 𝑂𝑃𝐴. 10 𝑃 8,6 π‘₯ -10 𝑂 10 𝐴 Full equation of tangent: π‘š= 6 8 = 3 4 𝑦=βˆ’ 4 3 π‘₯+𝑐 6= βˆ’ 4 3 Γ—8 +𝑐 β†’ 𝑐= 𝑦=βˆ’ 4 3 π‘₯+ 50 3 ? Bro Tip: If you have an equation with fractions, multiply appropriately to make your life easier. At 𝐴, 𝑦=0: 0=βˆ’ 4 3 π‘₯ =βˆ’4π‘₯+50 4π‘₯=50 π‘₯= 25 2 Therefore area of 𝑂𝑃𝐴 = 1 2 Γ— 25 2 Γ—6= 75 2 ? ? -10 ? Bro Tip: Note that the perpendicular height of the triangle is the 𝑦 value of 𝑃. 6 25/2

5 Test Your Understanding
Here is a circle with equation π‘₯ 2 + 𝑦 2 =169. The tangent to the circle at 𝑃 12,5 crosses the π‘₯-axis at 𝐴. a) Determine the coordinates of 𝐴. b) Hence determine the length of 𝑃𝐴 to 2dp. 13 𝑃 12,5 π‘₯ -13 13 π‘š π‘Ÿ = β†’ π‘š 𝑑 =βˆ’ 𝑦=βˆ’ 12 5 π‘₯+𝑐 5= βˆ’ 12 5 Γ—12 +𝑐 β†’ 𝑐= 𝑦=βˆ’ 12 5 π‘₯ When 𝑦=0: 0=βˆ’ 12 5 π‘₯ β†’ 0=βˆ’12π‘₯+169 π‘₯= Length of 𝑃𝐴: βˆ’ βˆ’5 2 =22.37 ? -13 Bro Recap: The distance between two points is: 𝑑= Ξ”π‘₯ Δ𝑦 2 Where Ξ”π‘₯ is change in π‘₯.

6 Exercise The diagram shows the circle with equation π‘₯ 2 + 𝑦 2 =25. What is the equation of the tangent at the following points? π‘₯ 13 -13 𝐴 5,12 𝐡 𝑂 1 2 π‘₯ 5 -5 𝐴 0,5 𝐡 4,3 𝐢 βˆ’3,4 The tangent to the above circle at the point 𝐴 5,12 intersects the π‘₯ axis at the point 𝐡. Find the equation of the tangent to the circle at the point 𝐴. π’š=βˆ’ πŸ“ 𝟏𝟐 𝒙+ πŸπŸ”πŸ— 𝟏𝟐 Find the area of triangle 𝑂𝐴𝐡. When π’š=𝟎, 𝒙= πŸπŸ”πŸ— πŸ“ Area = 𝟏 𝟐 Γ— πŸπŸ”πŸ— πŸ“ Γ—πŸπŸ= πŸπŸŽπŸπŸ’ πŸ“ =𝟐𝟎𝟐.πŸ– The line 𝑙 is tangent at the point 𝑃(π‘₯,𝑦) to the circle with equation π‘₯ 2 + 𝑦 2 =1. The gradient of 𝑙 is βˆ’ Determine the point 𝑃 π‘₯,𝑦 . Gradient of radius is 2 therefore equation of radius is π’š=πŸπ’™. Solving simultaneously with 𝒙 𝟐 + π’š 𝟐 =𝟏: 𝒙 𝟐 + πŸπ’™ 𝟐 =𝟏 β†’ 𝒙= 𝟏 πŸ“ , π’š= 𝟐 πŸ“ a ? b ? ? a 𝐴 0,5 : π’š=πŸ“ 𝐡 4,3 : π’š=βˆ’ πŸ’ πŸ‘ 𝒙+ πŸπŸ“ πŸ‘ 𝐢 βˆ’3,4 :π’š= πŸ‘ πŸ’ 𝒙+ πŸπŸ“ πŸ’ ? b N c ? ?


Download ppt "GCSE: Tangents To Circles"

Similar presentations


Ads by Google