Presentation is loading. Please wait.

Presentation is loading. Please wait.

6pp 3S- vs l / J´ Updated: One color, H+ detection: pages

Similar presentations


Presentation on theme: "6pp 3S- vs l / J´ Updated: One color, H+ detection: pages"— Presentation transcript:

1 6pp 3S- vs l / J´ Updated: 17.2.2016 One color, H+ detection: pages
KER spectra, J´= 8 and 0-1 from autumn 2013………………… 2 KER spectra, J´=8, (1:1 mix): 3 sets(exp ).………… KER spectra, J´=8 vs. Mix (exp )………………………….. 5 Selected „best“ KER spectrum, J´=8…………………………………. 6 KER spectra vs. Lamda………………………………………………………. 7-10 Comparison of wavelength scans and J´s ………………………… REMPI spectra………………………………………………………………… I(H*+Br*)/I(H*+Br) vs. l (J´) and 2hn…………………………… Shifts of the l(exp.) scale (by about 10.5 cm-1)……………… 23-26 the intensity ratios with respect to total KER intensity…… the „H*(n=3) + Br“ prediction vs the lowest KER peak……… 32-34 Angular distribution analysis…………………………………………… Prediction calculations for KER spectra……………………………… 49-62 Search for v+(max) for HBr+ and HBr+*……………………………… Precision of the shift procedure………………………………………… 66-68 Near-degenerate interaction 6pp <-> V(m+17)…………………. 69 KERs vs REMPI spectra, summary (figure+ text………………… Relative intensities of channels signals……………………………… 72-74 Angular distribution (b2) summary (fig. + text)… ……………… VMI vs. KER for J´ ca. 8,7,6,5,4,2………..…………………………… Beta4 vs. J´ ………………………………………………………………………… 83 Excitations via J´= 0 and 8 in 6ppi from J´= J´………………………. 84 Updated:

2 HBr +(1/2) peaks 3S-, J´= 8; 0-1(?) H+ + Br(1/2) HBr +(3/2) peaks
From autumn 2013 100% HBr 50:50 = HBr:He H+ + Br(3/2) KER/eV Lay:0,Gr:0

3 6pp 3S-, J´= 8; exp: 141010 50%:50% HBr:He mix Set3 Set2 Set1 pix
…PXP ,pxp; Lay:0; Gr:4;

4 6pp 3S-, J´= 8; exp: 141010 50%:50% HBr:He mix Set3 Set2 Set1 pix
…PXP ,pxp; Lay:0; Gr:4;

5 6pp 3S-, J´= 8; exp: 141013 Set3: 1:1 = HBr:He Set2: 1:0= HBr:He
Identical spectra pix …PXP ,pxp; Lay:1; Gr:5;

6 6pp 3S-, J´= 8; exp: Use 50%:50% spectrum from , which shows best resolution in the HBr+/HBr+* (v+) peak reagion for some reason. Let´s perform -prediction calculations. -angular distrib. analysis

7 6pp 3S-, J´= 8; exp: 141013 Landa= 235.952 235.900 235.863 KER/eV
; Lay:2; Gr:6;

8 6pp 3S-vs l( J´); exp: 141014 Landa/nm= 235.952 235.950 235.945
KER/eV ; Lay:5; Gr:11;

9 6pp 3S-vs l( J´); exp: 141014 Landa/nm= KER/eV
Could be due to H*(n=3) + Br See: Landa/nm= KER/eV ; Lay:5; Gr:11;

10 6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/nm= KER/eV 235.900
KER/eV ; Lay:6; Gr:12;

11 6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 7 down Landa/nm=
J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down Landa/nm= cm-1 KER/eV ; Lay:5; Gr:11; ATH ;Lay6, Gr:12

12 6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 7 Landa/nm= down
J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down H*+ Br* Landa/nm= H*+ Br KER/eV ; Lay:5; Gr:11; ;Lay6, Gr:12

13 6pp 3S-vs l( J´); exp: 141014 & 141015 Exp. Scans Shifted by 7
J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 7 down Landa/nm= cm-1 KER/eV ; Lay:6; Gr:12; ATH ;Lay6, Gr:12

14 6pp 3S-vs l( J´); exp: 141014 & 141015 Exp. Scans (0.005 nm steps)
J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. Scans (0.005 nm steps) Shifted by 7 down Landa/nm= cm-1 H*+ Br* H*+ Br KER/eV ; Lay:6; Gr:12; ;Lay6, Gr:12

15 6pp 3S-vs l( J´) Comments: In slides I have shifted the laser wavelengths by 7 cm-1 down in energy on the two-wavenumber scale which I feel that is realistic based on the noice level of the highest energy KER spectra (ca nm) which suggest that the edge of the Q line serie for the 6pp 3S- system is close to nm It is noteworthy that the nm spectra, where large structural alterations are seen in the KER spectra, are indeed in the J´= 7 – 8 region where near-resonance is found to occur. The ratio I(H*+Br*)/I(H*+Br)increases as l / J´ increases

16 Rotational peak positions
Perturbation region Exp. Scans in steps of nm (shifted up by 7 cm-1) Rotational peak positions J´= ; Lay:4; Gr:7;

17 The lower energy region (spectrum from Long, 141013):
6pp 3S-, …etc.; closer look at mass resolved REMPI spectra in the 6pp 3S- region and The lower energy region (spectrum from Long, ): ? 2hv/ cm-1 …6ppi 3sigma.pxp; Lay:0; Gr:0; eða: sigma.pxp

18 The lower energy region (spectrum from Long, 141013):
6pp 3S-, …etc.; closer look at mass resolved REMPI spectra in the 6pp 3S- region and The lower energy region (spectrum from Long, ): Br ->->Br** (2+1)REMPI atomic line ? ? The HBr+ spectrum seems to be shifted a bit relative to the others …6ppi 3sigma.pxp; Lay:0; Gr:0; eða: sigma.pxp

19 6pp 3S-vs l( J´); exp: 141014 Landa/ nm= KER/eV H*+ H*+ Br Br* 235.952
H*+ Br* H*+ Br KER/eV ; Lay:5; Gr:11;

20 6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/nm= KER/eV H*+ H*+ Br Br*
H*+ Br* KER/eV ; Lay:6; Gr:12;

21 6pp 3S-vs l( J´); exp: 141014 & 141015 I(H*+Br*)/ I(H*+Br) l(exp)/nm
; Lay:7; Gr:13;

22 6pp 3S-vs l( J´); exp: 141014 & 141015 2hn(exp.)/cm-1 I(H*+Br*)/
; Lay:8; Gr:14;

23 Exp. scans cm-1 Landa/ nm= Comments:
Careful look at the KER´s for the higher wavelength excitations (see slide 12) reveals that the noice levels for the , and and nm spectra are larger than those for the – nm spectra. This suggest that the – nm spectra correspind to the J´= 7 – 8 peaks whereas the , and and nm spectra correspond to the big gaps between the J‘ = 8-9 and 6-7 peaks: ERGO lets shift the exp wavelengths a bit further down. J´=J‘‘= 9 8 7 6 5 4 3 2 1 Exp. scans cm-1 Landa/ nm= ; Lay:5; Gr:11

24 6pp 3S-vs l( J´); exp: 141014 Exp. Scans Shifted by 10.5 cm-1 down
J´=J‘‘= Rot. lines 9 8 7 6 5 4 3 2 1 Exp. Scans Shifted by 10.5 cm-1 down H*+ Br* l/Lamda Exp. /nm= The near- resonance interaction region H*+ Br The near- resonance interaction region KER/eV ; Lay:5; Gr:11; ;Lay6, Gr:12

25 Spectrum“ is close to the Band head / edge of the Q line series.
6pp 3S-vs l( J´); exp: & J´=J‘‘= Rot. lines 9 8 7 6 5 4 3 2 1 ERGO: the „ nm“ Spectrum“ is close to the Band head / edge of the Q line series. Exp. Scans (0.005 nm steps) Shifted by 10.5 cm-1 down cm-1 H*+ Br* H*+ Br Lamda/nm= KER/eV ; Lay:6; Gr:12; ;Lay6, Gr:12

26 6pp 3S-vs l( J´); exp: 141014 & 141015 235.950 nm 235.855 nm
I(H*+Br*)/ I(H*+Br) nm nm Rotational lines J´=J´´= 2hn/ (shifted up by 10.5 cm-1) cm-1 ; Lay:8; Gr:14;

27 Now let´s look at, -the intensity ratios with respect to total KER intensity. x

28 6pp 3S-vs l( J´); exp: 141014 l/ nm= KER/eV H*+ Br* H*+ Br 235.952
H*+ Br* H*+ Br KER/eV ; Lay:5; Gr:11;

29 6pp 3S-vs l( J´); exp: 141014 & 141015 Landa/ nm= I(total): KER/eV
I(total): KER/eV ; Lay:6; Gr:12;

30 6pp 3S-vs l( J´); exp: 141014 & 141015 Intensity ratios 235.950 nm
I(H*+Br*)/ I(total) nm Rotational lines nm J´=J´´= I(H*+Br)/ I(total) 2hn/ (shifted up by 10.5 cm-1) cm-1 ; Lay:9; Gr:15;

31 6pp 3S-vs l( J´); exp: 141014 & 141015 Intensity ratios Rotational
I(HBr+/HBr+*)/ I(total) estimated Rotational lines J´=J´´= 2hn/ (shifted up by 10.5 cm-1) cm-1 ; Lay:10; Gr:17;

32 Now let´s look at, -the „H*(n=3) + Br“ prediction vs the lowest KER peak

33 6pp 3S-vs l( J´); exp: 141014 & 141015 10.5 cm-1 KER/eV
l(exp)/ 2hv corr. 3hv corr. 3hv corr + nm= (shifted) (shifted) E(J´=7): 10.5 cm-1 , , ,8 , ,5 , , ,2 , , ,9 , , ,6 , , ,3 , , KER/eV These values can be compared with the energy threshold for H*(n=3) + Br formation = cm-1 ; Lay:5; Gr:11; sheet: “int.ratios”

34 https://notendur.hi.is/~agust/rannsoknir/Crete/PPT-131209.pptx :
H*(n=3) + Br *

35 6pp 3S-vs l( J´); exp: & Angular distribution analysis (in preparation):

36 nm

37

38

39

40

41 6pp 3S-vs l( J´); exp: 141014 & 141015 pix HBr+/HBr+* H*+ H*+ Br* Br
H*(n=3) + Br (?) pix ; Lay:12; Gr: 0

42 6pp 3S-vs l( J´); exp: 141014 & 141015 q l(exp)/nm= 235.925 235.950
; Lay:6; Gr: 2

43 6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm=
l(exp)/ nm= q q ; Lay:7; Gr: 7,10

44 6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm=
l(exp)/ nm= q q ; Lay:8; Gr: 11,12

45 6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm=
l(exp)/ nm= q q ; Lay:9; Gr: 16,17

46 6pp 3S-vs l( J´); exp: 141014 & 141015 q q l(exp)/ l(exp)/ nm= nm=
l(exp)/ nm= q q ; Lay:10; Gr: 19,18

47 6pp 3S-vs l( J´); exp: 141014 & 141015; beta2 vs l(exp)
D,F (HBr+/HBr+*) b2 B (H*+Br*) C (H*+Br) A (H**+Br)? l (exp) / (~J´) ; Lay:11; Gr:1

48 6pp 3S-vs l( J´); exp: & Comments: The HBr+/HBr+* signals are close to be purely parallel The H*+Br* signal shows an increasing parallel character with l / J´ The H*+Br signal is close to „neutral „ (neither paralles or perpendicular throughout The H** + Br (?) signal is perpendicular

49 6pp 3S-vs l( J´); exp: & Prediction calculations for KER peaks:

50 6pp 3S-vs l( J´); exp: 141014 & 141015; prediction calculations for J´= 6 - 8/for H*+Br/Br*
l/Lamda Exp. /nm= ca. J´= 8 ca. J´= 7 ca. J´= 6 H*+ Br KER/eV ; Lay:5; Gr:11; ; sheet:KER, I,II

51 6pp 3S-vs l( J´); exp: 141014 & 141015; prediction calculations for J´= 0 – 5/for H*+Br/Br*
Lamda/nm= ca. J´= 5 ca. J´= 4 ca. J´= 3 ca. J´=2 ca. J´= 1 ca. J´= 0 KER/eV ; Lay:6; Gr:12; ; sheet:KER, I,II

52 Now let´s perform prediction calculations for J´ ca. 5-8
with respect to HBr+/HBr+*:

53 6pp 3S-vs l( J´); exp: 141014 Landa/nm= KER/eV
Could be due to H*(n=3) + Br See: Landa/nm= ca. J´= 8 ca. J´= 7 ca. J´= 6 ca. J´= 5 KER/eV ; Lay:5; Gr:11;

54 Comment: The structural changes with l / J´ suggest that higher v+ levels are populated as J´ increases from 5 to 8 suggesting that longer internuclear distance transitions are occuring as J´changes from 5 to 8 OR 3/2 <- 3/2 transitions increasing over ½ <- ½ transitions as J´ changes from 5 to 8

55 Based on Fig. 153 p: 320 in Herzberg (Spectra of diatomic molecules):
transitions from (J1,J2) to (L,S) coupling for the molecular states arising from 3P + 2S of the separated atoms the following holds for HBr H + Br + : Relative Energy1) 4P 2S1/2 + 3P0 1/2 cm-1 1/2 2S 1/2 cm-1 2S1/2 + 3P1 3/2 4S 1/2 2S1/2 + 3P2 2P 3/2 HBr+ H(2S1/2)+Br+(3PJ) 1) From NIST, atomic energy levels for Br+

56 Hence the assymptotic values of the HBr+(3/2) and HBr+
Hence the assymptotic values of the HBr+(3/2) and HBr+*(1/2) states correspond to H + Br+(3P1) and H + Br+(3P0) respectively.

57 E/cm-1 E(1/2; v+) E(3/2; v+) V+
E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+ (3P0)) E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+ (3P1)) E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) E(1/2; v+) E(3/2; v+) V+ ; Lay:11; Gr:18; ; sheet:KER, I,II

58 E/cm-1 v+(1/2) v+(3/2) E(1/2; v+) E(3/2; v+) V+ 28 129332.35
E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+(3P0)) 31 v+(1/2) E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+(3P1)) J´=J´´= 8 7 6 5 21 25 v+(3/2) 24 20 E(1/2; v+) E(3/2; v+) E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) V+ ; sheet:KER, I,II ; sheet:KER, I,II ; Lay:11; Gr:18;

59 6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5
See slide 58 See slide 58 v+(1/2)= ½ <- ½ 3/2 <- 3/2 v+(3/2)= KER/eV ; sheets:KER, I,II & KER,III,IV ; Lay:12; Gr:19;

60 6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.940, ca. J´= 8
See slide 58 See slide 58 v+(1/2)= ½ <- ½ 3/2 <- 3/2 v+(3/2)= KER/eV ; sheets:KER, I,II & KER,III,IV ; Lay:13; Gr:20;

61 6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5
v+max (see slide 58) v+max(see slide 58) v+(1/2)= ½ <- ½ 3/2 <- 3/2 v+(3/2)= KER/eV ; sheets:KER, I,II & KER,III,IV ; Lay:14; Gr:21;

62 6pp 3S-vs l( J´); exp: & comments: v+ assignments of peaks in v + structure of HBr +/HBr + * is not clear Possibly because of uncertainty in evaluations of v + peaks near the upper limit (i.e near v+(max)) The highest energy peak in the HBr + /HBr + * (v+) structure, which is found to increase as J´ increases from 5 to 8 must be due to HBr + (not HBr+*) based on the energetics. Most probably the 2.87 eV peak, which is found to decrease as J´ increases from 5 to 8 then is due to HBr+*.

63 E/cm-1 v+(1/2) v+(3/2) E(1/2; v+) E(3/2; v+) V+
Curve lowered by changing wexe = > (1/2) Curve lowered by changing wexe = > (3/2) E/cm-1 28 E(H+Br+(3P0)) = D(HBr)+IE(Br)+E(Br+(3P0)) v+(1/2) 30 31 E(H+Br+(3P1)) = D(HBr)+IE(Br)+E(Br+(3P1)) J´=J´´= 8 7 6 5 v+(3/2) 25 21 24 E(1/2; v+) 20 E(3/2; v+) E(H+Br+(3P2)) = D(HBr)+IE(Br)+E(Br+ (3P2)) V+ ; Lay:11; Gr:18; ; sheet:KER, I,II

64 6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.900, ca. J´= 5
v+max (see slide 63) v+max(see slide 63) v+(1/2)= ½ <- ½ 3/2 <- 3/2 v+(3/2)= KER/eV ; sheet:KER, I,II & III,IV ; Lay:13; Gr:20;

65 6pp 3S-vs l( J´); exp: 141014 & 141015 l(exp)= 235.940, ca. J´= 8
See slide 63 See slide 63 v+(1/2)= ½ <- ½ 3/2 <- 3/2 v+(3/2)= KER/eV ; sheet:KER, I,II & III,IV ; Lay:14; Gr:21;

66 6pp 3S-vs l( J´); exp: & comments: Although it is not clear what v+ levels the individual peaks in the HBr+/HBr+* KER spectrum correspond to, clearly higher v+ levels are populated via J´= 8 excitation (hence via the V state) than via v´= 5 which makes sense by comparison with earlier work on HCl by Loock and our conclusions concerning HI in our latest subission. 151021: I checked how shifting of 2hv by cm-1 compared to a corresponding shift of l by using the following criteria: Assume that l(measured) = corresponds to 2hv(J´=J´´ = 0) = cm-1 (according to C & G: see Page 4632) => i.e. l(measured) = <-> L = 235, nm and shifted all l(measured) By the difference (= , = 0.029):

67 B C D E F G Lamda 2hv from column F 2hv in D shifted: assuming <-> lamda 1hv 2hv 2hv +10,5 cm-1 235,95 42381,86 84763,72 84774,22113 235, 84774,14771 235,945 42382,76 84765,52 84776,01739 235, 84775,94441 235,94 42383,66 84767,31 84777,81372 235, 84777,74119 235,935 42384,56 84769,11 84779,61014 235, 84779,53804 235,93 42385,45 84770,91 84781,40662 235, 84781,33497 235,925 42386,35 84772,7 84783,20319 235, 84783,13198 235,92 42387,25 84774,5 84784,99983 235, 84784,92906 235,915 42388,15 84776,3 84786,79655 235, 84786,72622 235,91 42389,05 84778,09 84788,59334 235, 84788,52346 235,905 42389,95 84779,89 84790,39021 235, 84790,32077 235,9 42390,84 84781,69 84792,18716 235, 84792,11815 235,895 42391,74 84783,48 84793,98418 235, 84793,91562 235,89 42392,64 84785,28 84795,78128 235, 84795,71316 235,885 42393,54 84787,08 84797,57845 235, 84797,51077 235,88 42394,44 84788,88 84799,3757 235, 84799,30847 235,875 42395,34 84790,67 84801,17303 235, 84801,10624 235,87 42396,24 84792,47 84802,97043 235, 84802,90408 235,865 42397,13 84794,27 84804,76791 235, 84804,702 235,86 42398,03 84796,07 84806,56546 235, 84806,5 235,855 42398,93 84797,86 84808,36309 235, 84808,29807 235,85 42399,83 84799,66 84810,1608 235, 84810,09622 235,845 42400,73 84801,46 84811,95859 235, 84811,89445 Since the values in columns E and G are virtually the same the cm-1 shift (by 10.5 cm-1) Is OK sheet: int. ratios

68 Red lines: see slide above (no. 67)
6pp 3S-vs l( J´); exp: & Red lines: see slide above (no. 67) I(H*+Br*)/ I(H*+Br) nm = lm nm= lm Rotational lines J´=J´´= 2hn/ (shifted up by 10.5 cm-1) cm-1 ; Lay:8; Gr:14;

69 V1S+(v´=m+18) 5 : Energy / cm-1 : Near-degenerate Interaction W1S+(n=6; v´=0) 8 8 : 7 2 : V1S+(v´=m+17) 4 : 6pp3S-(v´=0)

70 J´= J´= J´´ J´´ 8 8 7 7 E/cm-1 E/cm-1 6 6 5 5 4 4 3 3 2 2 1 1 H+
H*(n=3) + Br H*(n=2) + Br* HBr+*(v+)/ HBr+(v+) H*(n=3) + Br H*(n=2) + Br* HBr+*(v+)/ HBr+(v+) H*(n=2) + Br H*(n=2) + Br J´= J´´ J´= J´´ Near-degenerate interaction region Near-degenerate interaction region 8 8 7 7 E/cm-1 6 E/cm-1 6 5 5 4 4 3 3 2 2 1 1 H+ H79Br+ ; Lay:7; Gr:13; ; Lay:7; Gr:13;

71 H+ VMI – REMPI for resonance excitations via the 6pp 3S-(v´= 0) Rydberg state for J´= J´´ (Q lines) = 0 – 8. KER spectra recorded in steps of Dl = nm (left). REMPI spectra for H+ and H79Br+ detections and J´/J´´ assignments tilted to the right. KER spectra closest to rotational lines are highlighted in red Judging from mass resolved REMPI analysis, near-degenerate interaction between the 6pp 3S-(v´= 0) Rydberg state and the valence (ion-pair) state V 1S+ (v´= m + 17) is occuring for J´ ~ 8 (7). According to theVMI data, for J´ ~ 8, 1) -H*(n = 3)+ Br appears, 2) – relative signal due to H*(n=2) + Br* increases, 3) – signals for high v+ levels of HBr+/HBr+* Increase relative to those for lower v+.

72 Near-degenerate interaction region Irel Irel Irel (HBr+/HBr+*)
Irel (Br*) J´= J´´= Irel (Br) 2hn / cm-1 ; Lay:9; Gr:15;

73 H+ VMI – REMPI for resonance excitations via the 6pp 3S-(v´= 0) Rydberg state for J´= J´´ (Q lines) = 0 – 8. Irel(i) = I(channel i) /I(total) vs. 2hn / cm-1 Clearly : Irel(Br*) increases in the near-degenerate interaction region Irel(Br) in constant/unchanged with 2hn Irel(HBr+/HBr+*) decreases in the near-degenerate interaction region

74 Irel Irel Irel (HBr+/HBr+*) Irel (H* +Br*) J´= J´´= 8 7 6 5 4 3 2 1 0
From Arnar

75 6pp 3S-vs l( J´); exp: 141014 & 141015; beta2 vs 2hn
Near-degenerate interaction region D(low v+),F(High v+) (HBr+/HBr+*) b2 B (H*(n=2)+Br*) C(H*(n=2)+Br) A (H**(n=3)+Br)? J´= J´´= 2hn / cm-1 ; Lay:13; Gr:3;

76 Comments: The HBr+/HBr+* signals are close to be purely parallel The H*(n=2) + Br* signal shows an increasing parallel character with l / J´ The H*(n=2) + Br signal is close to „neutral „ (neither paralles or perpendicular throughout The H**(n=3) + Br signal is perpendicular

77 l(measured) = 235.940 = 235.911 nm 2hn = 84777.7 cm-1 J´= J´´ ~ 8
; Gr:4;

78 l(measured) = 235.935 = 235.906 nm 2hn = 84779.5 cm-1 J´= J´´ ~ 7
; Gr:25;

79 l(measured) = 235.915 = 235.886 nm 2hn = 84786.7 cm-1 J´= J´´ ~ 6
; Gr:23;

80 l(measured) = 235.900 = 235.871 nm 2hn = 84792.1 cm-1 J´= J´´ ~ 5
; Gr:8;

81 l(measured) = 235.885 = 235.856 nm 2hn = 84797.5 cm-1 J´= J´´ ~ 4
; Gr:6;

82 l(measured) = 235.870 = 235.841 nm 2hn = 84802.9 cm-1 J´= J´´ ~ 2
; Gr:5;

83 6pp 3S-vs l( J´); beta4 vs 2hn
Near-degenerate interaction region C(H*(n=2)+Br) A (H**(n=3)+Br)? B (H*(n=2)+Br*) b4 F(High v+), D(low v+), (HBr+/HBr+*) J´= J´´= 2hn / cm-1

84 H*+Br* H*+Br E B V J´= 8 (6ppi(0)) J´= 8 (V(m+17)) J´= 0 (6ppi(0))
Lay:3, Gr: 0


Download ppt "6pp 3S- vs l / J´ Updated: One color, H+ detection: pages"

Similar presentations


Ads by Google