Download presentation
Presentation is loading. Please wait.
1
HBr Mass resolved REMPI and Imaging REMPI
2
E H + X+ + e J+ v+ HX+ + e H + X** IE(HX) J´ v´ (2+1)REMPI: 2hn + HX ->-> HX**(v´,J´) 1hn + HX** -> HX+(v+,J+) HX** Rydb. H + Br/Br* HX J´´ v´´= 0 r(HX)
3
E H + X+ + e J+ v+ HX+ + e H + X** J´ v´ (2+2)REMPI: 2hn + HX ->-> H+X-(v´,J´) 2hn + H+X- -> H + X+ HX** v´,J´ Rydb. H+X-/Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)
6
HCl, F1D2 Q Intensity J´=J´´ = 9 8 7 6 5 4 3 2 H35Cl+ 35Cl+ 2hn / cm-1
7
e- HX REMPI: HX+ X+ H X ** H+--X- HX Energy IE limit J´ J´ v´ v´
r(H-X)
8
E Interactions ? State
9
E Interactions ? State (1) / y0 (2) / y0 c1y0 y c2y0 c1´y0 c2´y0 c1 c2
Fraction Rydb. Fraction ion-pair c1y0 1 y a c2y0 2 = + b c1´y0 c2´y0 - c1 c2 = 1
10
E Interaction W12: strength (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y
Fraction Rydb. Fraction ion-pair 1 2 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2
11
E( ) E(J´) E (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y c1´y0 c2´y0 DE
Fraction Rydb. 1 2 Fraction ion-pair 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2
12
I.e. Mixing (c12 and c22) J´ dependent:
HCl: V1S F1D2 x
13
HX+ X+ E( ) E(J´) E (1) / y0 (2) / y0 y c1y0 c2y0 c1 c2 y c1´y0 c2´y0
Fraction Rydb. 1 2 Fraction ion-pair 2 2 y c1y0 c2y0 c1 c2 + + = 1 = a 1 2 y c1´y0 c2´y0 - = b 1 2
14
F, v´= X, v´=0 H35Cl H37Cl I(Cl+)/I(HCl+) J´
15
Q HCl, F1D2 Com- press- ion E x p a n s i o n Intensity J´=J´´ = 9 8 7
6 5 4 3 2 H35Cl+ 35Cl+ 2hn / cm-1
16
DE
17
Above: Weak „near-resonance“ state interaction (W12 small)
Below: Strong „off-resonance interaction“
18
H79Br
19
E H + X+ + e J+ v+ HX+ + e H + X** J´ v´= v´=m+5 v´=m+4 HX** E H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)
20
E H + X+ + e J+ v+ HX+ + e H + X** J´ v´= v´=m+5 v´=m+4 HX** E H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)
21
H79Br V 1S(0+) J´=9 W´=0 W´=0 J´=6 v´=m+5 Off resonance J´=0 J´=6
E/cm-1 J´=6 J´=0 E 1S(0+), v´=0 J´=0
22
E(0) Exp: Calc:
24
H79Br V 1S(0+) J´=9 J´=6 v´=m+5 J´=0 J´=6 J´=9 v´=m+4 E/cm-1 J´=6 J´=0
E 1S(0+), v´=0 J´=0
25
Imaging experiments in Crete:
26
Suggestions for experiments:
-relevant to our studies (see above): Studies relevant to strong state interactions vs. J´ ( /JCP; 2013) (or Record ion images (H+, Br+, HBr+ (?)) vs J´ for two-photon, one-color resonance excitations to J´ levels of The Rydberg state E(v´=0); For Q lines, J´=0, 2, ..8, 9(?) The Ion-pair state V(v´=m+5); For Q lines, J´=0, 2, ..8, 9(?) The Ion-pair state V(v´= m+4); For Q lines, J´=0, 2, ..8, 9(?) (excitation range: – cm-1/ eV; photons: nm; see lines: and/or :
27
2) Studies relevant to i) weak resonance state interactions and ii) strong interactions vs. J´ ( /JCP, 2012) (or ) Record ion images (H+, Br+, HBr+ (?)) vs J´ for two-photon one color resonance excitations to J´ levels of a) The Rydberg state F(v´=1); Q lines, J´=3, 4,5,6,7 (i) b) The Rydberg state E(v´=1); Q lines, J´= 0,1,….7(?) (ii) c) The Rydberg state H(v´=0), Q lines, J´= 0,1,….9(?) (ii) d) The Ion-pair state V(v´=m+7), Q lines, J´= 0,1, ..(5),..9 (i and ii) e) The Ion-pair state V(v´=m+8), Q lines, J´= 0,1,…7 (ii) (excitation range cm-1/9.80 – 9.96 eV; photons: nm; see lines: and/or and/or
28
H+ Br+ and Br+ from Br resonances Br- (<= H+ + Br-)
31
How are the H+ ´s formed?
32
H+ + Br(3/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- [ 4P,5s ] 3P0 H + Br**(5s) V/Ion-pair Ry
33
H+ + Br (3/2)/Br*(1/2) [22P].. [ B2S ].. HBr+(v+)(3/2,1/2) H* + Br*(1/2) H* + Br (3/2) H+ + Br - H + Br**(5s) [ 4P,5s ] 3P0 V/Ion-pair Ry
34
H+ + Br*(1/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- H + Br**(5s) [ 4P,5s ] 3P0 V/Ion-pair Ry
35
HBr+(A2S+) HBr*** [A2S+].. HBr+(X2P) H+ + Br- V/Ion-pair Ry
36
In summary (?): H+ + Br- ….via HBr***/H+Br- (2+1) hn ….via HBr+(v+) (2+2) hn ….via H* + Br/Br* (2+2) hn H+ + Br (3/2)/Br*(1/2) H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) V/Ion-pair Ry
37
Imaging experiments / data
38
HBr, E(v´=0), J´= 1 J´= 1,2,…….
39
J´= 10(?) 9 8 7 6 5 4 3 2 1 KER/eV
40
Signal predictions
41
H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn
42
H+ + Br*(1/2) E H+ + Br (3/2) H + Br+ + e KER(3/2) KER(1/2) HBr+ + e H* + Br*(1/2) H* + Br (3/2) H + Br** SO(Br*) HBr** 3hn E(H*) H+Br- H + Br D0(HBr) HBr E(J´´) E(J´´)+3hn = D0(HBr) +E(H*)+KER(3/2) => KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) E(J´´)+3hn = D0(HBr) +E(H*)+KER(3/2) + SO(Br*) => KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*)
43
H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*) E(J´´) = B´´(J´´(J´´+ 1)) – D´´J´´2(J´´+ 1)2 H+ + Br- ….via HBr***/H+Br- (2+1) hn KER= 3hn + E(J´´) – D0(HBr) - IE(H) + EA(Br)
44
HBr, E(0): H+ + Br(3/2) J´= 10 9 8 7 6 5 4 3 2 1 Predicted KER´s For H+ + Br- H+ + Br(1/2) KER/eV KER/eV
45
H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) ….via H* + Br/Br* (2+2) hn KER(3/2)=3hn + E(J´´)–D0(HBr)-E(H*) KER(1/2)=3hn + E(J´´)–D0(HBr)-E(H*)-SO(Br*) E(J´´) = B´´(J´´(J´´+ 1)) – D´´J´´2(J´´+ 1)2 H+ + Br- ….via HBr***/H+Br (2+1) hn KER= 3hn + E(J´´) – D0(HBr) - IE(H) + EA(Br) H+ + Br (3/2)/Br*(1/2) ….via HBr+(3/2,v+)/HBr+(1/2,v+) (2+2) hn KER(3/2<- 3/2)= hn + IE(HBr+ (3/2)) + G0(HBr+ (3/2),v+) –D0(HBr) - IE(H) KER(1/2<- 3/2)= hn + IE(HBr+ (3/2)) + G0(HBr+ (3/2),v+) –D0(HBr) - IE(H)-SO(Br*) KER(3/2<- 1/2)= hn + IE(HBr+ (1/2)) + G0(HBr+ (1/2),v+) –D0(HBr) - IE(H) KER(1/2<- 1/2)= hn + IE(HBr+ (1/2)) + G0(HBr+ (1/2),v+) –D0(HBr) - IE(H)-SO(Br*) G0 (HBr+) = we(v++1/2) – wexe (v++1/2)2+weye (v++1/2)3 -(we(1/2) – wexe (1/2)2+weye (1/2)3)
46
HBr, E(0): H+ + Br(3/2) H+ + Br(1/2) H+ + Br (3/2)/Br*(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) KER/eV Negligible shift of peaks
47
<- HBr+(3/2,v+)/HBr+*(1/2,v+)
HBr, E(0), J´=1: H+ + Br(3/2) H+ + Br (3/2)/Br*(1/2) H+ + Br(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= v+= v+= v+= KER/eV Agust,lab top,C:/…/E0-KER a.pxp
48
H+ + Br- ….via HBr***/H+Br- (2+1) hn ….via HBr+(v+) (2+2) hn ….via H* + Br/Br* (2+2) hn H+ + Br (3/2)/Br*(1/2) H+ + Br(3/2,1/2) H+ + Br*(1/2, 3/2) V/Ion-pair Ry Signal of Channel via Ion-pair Signal of Channel via Rydberg vs. J´ measure of Rydberg-Ion-pair interactions vs. J´
49
<- HBr+(3/2,v+)/HBr+*(1/2,v+)
HBr, E(0): H+ + Br(3/2) H+ + Br (3/2)/Br*(1/2) H+ + Br(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= v+= v+= v+= KER/eV Agust,lab top,C:/…/E0-KER b.pxp (Gr1, Lay0)
50
H+ + Br*(1/2, 3/2)<- H* + Br/Br*
J´ Agust,lab top,C:/…/E0-KER c.pxp (Gr1, Lay0)
51
H+ + Br (3/2)/Br*(1/2)<- HBr+(v+)
H+ + Br(3/2,1/2)<- H* + Br/Br* J´ Agust,lab top,C:/…/E0-KER c.pxp (Gr1, Lay0)
52
Ion-pair states V(m+4) and V(m+5) spectra:
53
<- HBr+(3/2,v+)/HBr+*(1/2,v+)
J´= 1 H+ + Br(3/2) H+ + Br(1/2) H+ + Br (3/2)/Br*(1/2) <- HBr+(3/2,v+)/HBr+*(1/2,v+) V(m+5) Br/Br* HBr+/HBr+* ½ <- ½ 3/2 <- ½ ½ <- 3/2 3/2 <- 3/2 v+= v+= E(0) V(m+4) KER/eV Agust,lab top,C:/…/E0-KER pxp (Gr2, Lay3)
54
H+ + Br*(1/2, 3/2)<- H* + Br/Br*
V(m+5) J´= V(m+4) J´= E(0) J´= 2hn/cm-1 Agust,lab top,C:/…/E0-KER d.pxp (Gr3, Lay3)
55
H+ + Br*(1/2, 3/2)<- H* + Br/Br*
Larger for the V states than E(0) H+ + Br(3/2,1/2)<- H* + Br/Br*
56
H+ + Br*(1/2, 3/2)<- H* + Br/Br*
V(m+5) J´= V(m+4) J´= E(0) J´= 2hn/cm-1 Agust,lab top,C:/…/E0-KER d.pxp (Gr3, Lay3)
57
H+ angular distributions:
58
H++Br(3/2) H++Br(1/2) H++Br(1/2) || || || (^) H++Br(3/2) ^ ^ ^ H++Br(1/2) ^ ^ ^ H++Br(3/2) ^ , || ^ , || ^ , ||
59
H++Br(3/2) H++Br(1/2) H++Br(1/2) ^ ^ ^ H++Br(3/2) ^ , || || || J´ 1 2 3 4 5 6 7 8 9 H++Br(1/2) || ||, ^ ^ H++Br(3/2) ^,||
60
H+ + Br(3/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- [ 4P,5s ] 3P0 H + Br**(5s) V/1S+ E1S+
61
H+ + Br*(1/2) [22P] 1S0,3P0 [ B2S ].. H* + Br*(1/2) H* + Br (3/2) H+ + Br- H + Br**(5s) [ 4P,5s ] 3P0 V/1S+ E1S+
62
Br+ images HBr Molecular resonances Br atom resonances
63
HBr Molecular resonances
H + X+ + e J+ v+ HX+ + e 3hn: X+ <- H + X** 2hn: X+ <-<-<- H+ Br/Br* 1hn: X+ <-<-<- H+ Br/Br* KER´s H + X** J´ v´ HX** v´,J´ H+X- /Ion-pair/V H + Br/Br* HX J´´ v´´= 0 r(HX)
64
HBr, E(0); Br+ KER´s 1hn 2hn 3hn „blob“! Max: KER(81Br) eV 0,035197
0,03524 0,035307 0,035396 0,035509 0,035644 0,035801 0,03598 0,036177 0,036403 81Br KER KER(Br(3/2)) KER(Br(1/2)) eV 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 81Br KER KER(Br(3/2)) KER(Br(1/2)) eV 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, J´ 1 2 3 4 5 6 7 8 9 10 „blob“!
65
Br atom resonances E X+ + e X** X/X* Only „1hn channel“ observed H + X+ + e J+ v+ HX+ + e H + X** J´ v´ HX** v´,J´ H+X- /Ion-pair/V H + X/X* HX J´´ v´´= 0 r(HX)
66
HBr „near-resonance“ interactions:
Exp. 3 & 4 (?):
67
Alternative HBr experiments(3 & 4):
3) „near-resonance“ interaction: k3P1(v´= 0) (k(0)) and V(m+9) for J´= 7 Ref: :
68
3) „near-resonance“ interaction: k3P1(v´= 0) (k(0)) and V(m+9) for J´= 7
Ref: :
69
4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9
Ref: : O Q S
70
4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9
Ref: :
71
4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9
Ref: :
72
4) „near-resonance“ interaction: 6pp3S-(v´= 0) and V(m+17) for J´= 7,8,9
Ref: :
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.