Download presentation
Presentation is loading. Please wait.
1
Section 1.2 Trigonometric Ratios
2
Objectives: 1. To state and apply the Pythagorean theorem. 2. To define the six trigonometric ratios.
3
Pythagorean Theorem In right ABC, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse. a2 + b2 = c2 B A C
4
Trigonometric Ratios leg opposite A sine of A = hypotenuse
leg adjacent A cosine of A = leg adjacent A leg opposite A tangent of A =
5
SOHCAHTOA ine pposite ypotenuse osine djacent ypotenuse angent pposite
6
Trigonometric Ratios h o A sin = h a A cos = a o A tan = hypotenuse
opposite adjacent A h o A sin = h a A cos = a o A tan =
7
Reciprocal Ratios 1 cosecant of A = cscA = sinA 1
cosA 1 secant of A = secA = tanA 1 cotangent of A = cotA =
8
Reciprocal Ratios o h A csc = a h A sec = o a A cot = A opposite
adjacent hypotenuse o h A csc = a h A sec = o a A cot =
9
EXAMPLE 1 Find the six trigonometric ratios for G in right EFG.
g2 + e2 = f2 g = 82 g = 64 g2 = 28 g = 2 7 8 6 E F
10
Practice Question: Find the six trigonometric ratios for E in right EFG.
9 11 G E F sin E = 1. 2. 3. 4. 9 11 2 10 11 9 10 20 2 10 9
11
P(x,y) r y x
12
Trigonometric Ratios r y hyp opp sin = q y r opp hyp csc = q r x hyp
adj cos = q x r adj hyp sec = q x y adj opp tan = q y x opp adj cot = q
13
EXAMPLE 2 Find the six trigonometric ratios for a 90º angle.
x=0, y=1, r=1 cos = 0 sin = 1 tan = und. 90° P
14
EXAMPLE 2 Find the six trigonometric ratios for a 90º angle.
x=0, y=1, r=1 sec = und. csc = 1 cot = 0 90° P
15
Practice Question: Find the six trigonometric ratios for a 180º angle.
sin = und. 180° P
16
Special Triangles a2 + b2 = c2 12 + 12 = c2 1 + 1 = c2 c2 = 2 45 1 2 c
17
Special Triangles 2 ÷ ø ö ç è æ 2 1 sin 45° = 2 c = 45 1
18
Special Triangles 2 sin 45° = 2 c = 45 1 2 cos 45° = tan 45° = 1
19
Special Triangles csc 45° = 2 2 c = 45 1 sec 45° = 2 cot 45° = 1
20
2 sin 45° = cos 45° = tan 45° = 1 csc 45° = sec 45° = cot 45° =
21
Special Triangles a2 + b2 = c2 12 + b2 = 22 1 + b2 = 4 b2 = 3 60 2 1
30 3 b =
22
Special Triangles 3 ÷ ø ö ç è æ 3 1 60 2 1 30 tan 30° = 3 b =
23
Special Triangles 60 2 1 30 3 b = tan 30° = 3 1 sin 30° = 2 3
cos 30° =
24
Special Triangles 60 2 1 30 3 b = cot 30° = 3 csc 30° = 2 3 2
sec 30° =
25
3 tan 30° = sin 30° = cos 30° = 2 1 cot 30° = csc 30° = sec 30° =
26
Special Triangles 60 2 1 30 3 b = 2 3 sin 60° = 2 1 cos 60° =
tan 60° = 3
27
Special Triangles 60 2 1 30 3 b = 3 2 csc 60° = sec 60° = 2 3
cot 60° =
28
sin 60° = cos 60° = tan 60° = 2 3 1 csc 60° = sec 60° = cot 60° =
29
Homework: pp
30
►A. Exercises 1. Find the six trig. ratios for both acute angles in each triangle. A 5 2 B C 21
31
1st-solve for side n n2 = 122-22 = 144-4 = 140 22 + n2 = 122 35 2 140
►A. Exercises 3. Find the six trig. ratios for both acute angles in each triangle. n M L 2 12 N 1st-solve for side n n2 = = = 140 22 + n2 = 122 35 2 140 n =
32
#3. 35 2 M L 2 12 N
33
►A. Exercises 7. Find the six trig. functions for an angle in standard pos. whose terminal ray passes through the point (-6, -1). -6 -1 37
34
-6 -1 37 sin = csc = cos = sec = tan = cot =
35
►B. Exercises 15. Find the six trig. ratios for the quadrantal angle measuring 180°.
36
►B. Exercises 15. Find the six trig. ratios for the quadrantal angle measuring 180°. (-1, 0)
37
■ Cumulative Review 30. Give the distance between (2, 7) and (-3, -1).
38
■ Cumulative Review 31. Give the midpoint of the segment joining (2, 7) and (-3, -1).
39
■ Cumulative Review 32. Give the angle coterminal with 835 if 0 360.
40
■ Cumulative Review 33. Convert 88 to radians.
41
■ Cumulative Review 34. If sec = 7, find cos .
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.