Presentation is loading. Please wait.

Presentation is loading. Please wait.

Factoring ax2 + bx + c Objective:

Similar presentations


Presentation on theme: "Factoring ax2 + bx + c Objective:"— Presentation transcript:

1 Factoring ax2 + bx + c Objective:
Students will use factor trinomials of the form ax2 + bx + c.

2 Algebra Standards: 11.0 Students apply basic factoring techniques to second and simple third degree polynomials. These techniques include finding a common factor to all of the terms in a polynomial and recognizing the difference of two squares, and recognizing perfect squares of binomials. 14.0 Students solve a quadratic equation by factoring or completing the square.

3 a) 2x + 12 e) -6x2 – 14x 2 ( ) x + 6 -2x ( ) 3x + 7 b) 8x – 12 f) 4x2
#1 Factor a) 2x + 12 e) -6x2 – 14x 2 ( ) x + 6 -2x ( ) 3x + 7 b) 8x – 12 f) 4x2 – 4x 4 ( ) 2x – 3 4x ( ) x – 1 c) 4x2 + 12x g) -x2 – 20x 4x ( ) x + 3 -x ( ) x + 20 d) -3x + 21 -3 ( ) x – 7

4 Factor 4x2 – 20x + 9 4 • 9 = 36 4x2 – 2x 18x – + 9 2x ( ) 2x – 1 -9
Step 1) is to re-write the MIDDLE term as TWO TERMS 1a) Multiply the First and Last Term (coefficients) 1b) Find all the factors of 36 4 • 9 = 36 1c) Find the two factors to replace the MIDDLE TERM 1 • 36 2• 18 Step 2) Split in half 3 • 12 Step 5) Factor the first half 4 • 9 Step 6) Both halves have something in common 6 • 6 Step 7) Factor second half Step 8) Factor the common 4x2 2x 18x + 9 2x ( ) 2x – 1 -9 (2x – 1) (2x – 1) ( ) 2x –9

5 Factor 4x2 – 20x + 9 (2x – 1) ( ) 2x –9 (2x – 1)(2x – 9) First Outer
( ) 2x –9 Step 9) Check answer (2x – 1)(2x – 9) First Outer Inner Last 4x2 -18x -2x +9 4x2 – 20x + 9

6 Factor 3x2 + 22x + 7 3 • 7 = 21 3x2 + x + 21x + 7 x ( ) 3x + 1 +7
3 • 7 = 21 3x2 + x + 21x + 7 x ( ) 3x + 1 +7 (3x + 1) 1 • 21 3 • 7 (3x + 1) ( ) x + 7 Check answer (3x + 1)(x + 7) First Outer Inner Last 3x2 +21x +x +7 3x2 + 22x + 7

7 Factor 10x2 + 13x – 3 10 • 3 = -30 10x2 – 2x + 15x – 3 2x ( ) 5x – 1
Checkpoint Factor 10x2 + 13x – 3 10 • 3 = 10x2 2x + 15x – 3 2x ( ) 5x – 1 +3 (5x – 1) 1 • 30 2 • 15 3 • 10 (5x – 1) ( ) 2x + 3 5 • 6 Check answer (5x – 1)(2x + 3) First Outer Inner Last 10x2 +15x -2x -3 10x2 + 13x – 3

8 Factor 9x2 + 42x – 15 3( ) 3x2 + 14x – 5 3x2 x – + 15x – 5 3 • 5 = -15
#4 Factor with a Common Factor for a, b, and c Factor 9x2 + 42x – 15 3( ) 3x2 + 14x – 5 3x2 x + 15x – 5 3 • 5 = x ( ) 3x – 1 +5 (3x – 1) 1 • 15 3 • 5 3 (3x – 1) ( ) x + 5 Check answer (3x – 1)(x + 5) First Outer Inner Last 3x2 +15x -x -5 3x2 + 14x – 5

9 Factor -12x2 + 10x + 2 -2( ) 6x2 – 5x – 1 6x2 6x – + x – 1 6 • 1 = -6
Checkpoint Factor -12x2 + 10x + 2 -2( ) 6x2 – 5x – 1 6x2 6x + x – 1 6 • 1 = 6x ( ) x – 1 + 1 (x – 1) 1 • 6 2 • 3 -2 (x – 1) ( ) 6x + 1 Check answer (x – 1)(6x + 1) First Outer Inner Last 6x2 +x -6x -1 6x2 – 5x – 1

10 Factor 15x2 – 35x + 10 5( ) 3x2 – 7x + 2 3x2 6x – – x + 2 3 • 2 = 6 3x
Checkpoint Factor 15x2 – 35x + 10 5( ) 3x2 – 7x + 2 3x2 6x x + 2 3 • 2 = 6 3x ( ) x – 2 –1 (x – 2) 1 • 6 2 • 3 5 (x – 2) ( ) 3x – 1 Check answer (x – 2)(3x – 1) First Outer Inner Last 3x2 -x -6x +2 3x2 – 7x + 2

11 Solve 6x2 + 10x + 15 = 2x2 + 26x 60 -2x2 -26x -2x2 -26x 4x2 – 16x + 15
#5 Solve a Quadratic Equation Solve 6x x + 15 = 2x2 + 26x 60 -2x2 -26x -2x2 -26x 1• 60 2 • 30 4x2 – 16x + 15 = 3 • 20 4 • 15 4x2 6x 10x + 15 5 • 12 2x ( ) 2x – 3 – 5 (2x – 3) 6 • 10 (2x – 3) ( ) 2x – 5 = 2x – 3 = 0 or 2x – 5 = 0 2x = 3 2x = 5 5 x = 3 2 x = 2

12 Solve 14n2 + 10n + 2 = -17n –7 126 +17n +7 +17n +7 14n2 + 27n + 9 =
Checkpoint Solve 14n n + 2 = -17n –7 126 +17n +7 +17n +7 1• 126 2 • 63 14n2 + 27n + 9 = 3 • 42 6 • 21 14n2 + 6n + 21n + 9 2n ( ) 7n + 3 +3 (7n +3) (7n +3) ( ) 2n + 3 = 7n +3 = 0 or 2n + 3 = 0 -3 -3 -3 -3 1 7n = -3 1 2n = -3 3 n = 3 2 n = 7

13 Assignment Book Pg. 606 – 607 #22, 25, 27, 28, 31, 32, 42, 48, 49, 52


Download ppt "Factoring ax2 + bx + c Objective:"

Similar presentations


Ads by Google