Download presentation
Presentation is loading. Please wait.
1
Section 7.5: Review
2
3π₯ π₯ ππ₯ Example 1 Solution a: Substitution π’= π₯ 2 +4 ππ₯= ππ’ 2π₯ ππ’=2π₯ππ₯ 3π₯ π₯ ππ₯= 3π₯ π’ ππ’ 2π₯ = π’ ππ’ = π’ β ππ’ = π’ β β πΆ =3 π’ πΆ =3 π₯ πΆ
3
Solution b: Trig Substitution
3π₯ π₯ ππ₯= 3π₯ π₯ ππ₯ π₯=2 π‘ππ π ππ₯=2 π ππ 2 πππ π₯ = 4 π‘ππ 2 π+4 = 4( π‘ππ 2 π+1) =2π πππ 3π₯ π₯ ππ₯= 3(2π‘πππ) 2π πππ 2 π ππ 2 πππ =6 π‘πππ π πππ ππ =6π πππ+πΆ =3 2π πππ +πΆ =3 π₯ πΆ
4
π₯ 3 ln π₯ππ₯ = π₯ 4 4 ln π₯ β ( π₯ 4 4 )( 1 π₯ )ππ₯
Example 2 Solution: Integration by parts π’= ln π₯ ππ£= π₯ 3 ππ₯ ππ’= 1 π₯ π£= π₯ 4 4 π₯ 3 ln π₯ππ₯ = π₯ ln π₯ β ( π₯ )( 1 π₯ )ππ₯ = π₯ ln π₯ β π₯ 3 ππ₯ = π₯ ln π₯ β π₯ C = π₯ ln π₯ β π₯ πΆ
5
Num degree > Den degree
Example 3 Solution: Num degree > Den degree Apply long division algorithm: 2 π₯ 5 β3π₯+4 π₯( π₯ = 2 π₯ 5 β3π₯+4 π₯ 3 +4π₯ First divide the leading term 2π₯ 5 of the numerator polynomial by the leading term π₯ 3 of the divisor and write the answer 2π₯ 2 on the top line: 2π₯ 2 Now multiply this term 2 π₯ 2 by the divisor π₯ 3 +4π₯, and write the answer 2π₯ 2 π₯ 3 +4π₯ = 2π₯ 5 + 8π₯ 3 under the numerator polynomial, lining up terms of equal degree:
6
2π₯ 2 2π₯ 5 + 8π₯ 3 Next subtract the last line from line above it: 2π₯ 2 2π₯ 5 + 8π₯ 3 Now repeat the procedure: divide the leading term β8π₯ 3 of the polynomial on the last line by the leading term π₯ 3 of the divisor to obtain β8 and add this term β8 on the top line: 2π₯ 2 β8 2π₯ 5 + 8π₯ 3
7
Then multiply βbackβ: β8 π₯ 3 +4π₯ = β8π₯ 3 β32π₯ and write the
answer under the last line polynomial, lining up terms of equal degree: 2π₯ 2 β8 2π₯ 5 + 8π₯ 3 β8π₯ 3 β32π₯ Next subtract the last line from line above it: 2π₯ 2 β8 2π₯ 5 + 8π₯ 3 β8π₯ 3 β32π₯ 29π₯+4
8
Num degree < Den degree
Youβre done since the degree of 29π₯+4 is 1, which is less than the degree of divisor, which is 3. Consequently, 2 π₯ 5 β3π₯+4 π₯( π₯ = 2 π₯ 5 β3π₯+4 π₯ 3 +4π₯ = 2π₯ 2 β8+ 29π₯+4 π₯ 3 +4π₯ 2 π₯ 5 β3π₯+4 π₯( π₯ ππ₯= 2π₯ 2 β8+ 29π₯+4 π₯ 3 +4π₯ ππ₯ = 2π₯ 2 ππ₯β 8ππ₯ π₯+4 π₯ 3 +4π₯ ππ₯ Next, apply partial fraction for πππ+π π π +ππ Num degree < Den degree
9
29π₯+4 π₯ 3 +4π₯ = 29π₯+4 π₯( π₯ 2 +4) = π΄ π₯ + π΅π₯+πΆ π₯ 2 +4
= π΄ π₯ π΅π₯+πΆ π₯ π₯( π₯ 2 +4) Thus, π΄ π₯ π΅π₯+πΆ π₯=29π₯+4 π΄+π΅ π₯ 2 +πΆπ₯+4π΄=0 π₯ 2 +29π₯+4 π΄+π΅=0 πΆ=29 4π΄=4 π΄=1, π΅=β1, πΆ=29 Therefore, 29π₯+4 π₯ 3 +4π₯ = 29π₯+4 π₯( π₯ 2 +4) = π΄ π₯ + π΅π₯+πΆ π₯ 2 +4 = 1 π₯ + (β1)π₯+29 π₯ 2 +4 = 1 π₯ + (β1)π₯ π₯ π₯ 2 +4
10
2 π₯ 5 β3π₯+4 π₯( π₯ 2 +4) ππ₯= 2π₯ 2 ππ₯β 8ππ₯+ 29π₯+4 π₯ 3 +4π₯ ππ₯
= 2π₯ 2 ππ₯β 8ππ₯ π₯ ππ₯+ (β1)π₯ π₯ 2 +4 ππ₯ π₯ 2 +4 ππ₯ =2 π₯ β8π₯+ ln π₯ β ln π₯ tan β1 π₯ 2 +πΆ
11
Example 4 Solution a: Known formula π₯ π₯ 2 β1 ππ₯= sec β1 π₯+πΆ 3 π₯ π₯ 2 β1 ππ₯= π₯ π₯ 2 β1 ππ₯ =3 sec β1 π₯+πΆ Solution b: Trig Substitution π₯=π πππ π= sec β1 π₯ ππ₯=π πππ π‘πππ ππ π₯ 2 β1 =π‘πππ
12
3 π₯ π₯ 2 β1 ππ₯= π₯ π₯ 2 β1 ππ₯ = π πππ π‘πππ π πππ π‘πππ ππ =3 1ππ =3π+πΆ =3 sec β1 π₯+πΆ
13
Num degree < Den degree
Example 5 Solution: Partial Fraction Num degree < Den degree π₯ 2 β4 π₯( π₯ 2 +5) ππ₯= π΄ π₯ + π΅π₯+πΆ π₯ 2 +5 ππ₯ π₯ 2 β4 π₯( π₯ 2 +5) = π΄ π₯ + π΅π₯+πΆ π₯ 2 +5 = π΄ π₯ π΅π₯+πΆ π₯ π₯( π₯ 2 +5) 1π₯ 2 +0π₯β4= π΄+π΅ π₯ 2 +πΆπ₯+5π΄ 1=π΄+π΅ 0=πΆ β4=5π΄ π΄=β π΅= πΆ=0
14
π₯ 2 β4 π₯( π₯ 2 +5) ππ₯= π΄ π₯ + π΅π₯+πΆ π₯ 2 +5 ππ₯
Thus, π₯ 2 β4 π₯( π₯ 2 +5) ππ₯= π΄ π₯ + π΅π₯+πΆ π₯ 2 +5 ππ₯ = β 4 5 π₯ π₯ π₯ 2 +5 ππ₯ = β 4 5 π₯ ππ₯ π₯ π₯ ππ₯ =β 4 5 ln π₯ ln π₯ πΆ
15
Solution: Complete the Square
Example 6 Solution: Complete the Square π₯ 2 +6π₯β5= π₯ 2 +6π₯ β β5 = π₯ 2 +6π₯+9β9β5 = (π₯+3) 2 β14 β4 π₯ 2 +6π₯β5 ππ₯= β4 (π₯+3) 2 β14 ππ₯ Then Substitution π’=π₯+3 ππ’=ππ₯ β4 π₯ 2 +6π₯β5 ππ₯= β4 (π₯+3) 2 β14 ππ₯=β π’ 2 β ππ’
16
π πππ= π’ 14 Next Trig Substitution π’= 14 π πππ ππ’= 14 π πππ π‘πππ ππ π’ 2 β = 14( π ππ 2 πβ1) = 14 π‘πππ π‘πππ= π’ 2 β β4 π₯ 2 +6π₯β5 ππ₯= β4 (π₯+3) 2 β14 ππ₯=β π’ 2 β ππ’ Thus, =β π‘πππ π πππ π‘πππ ππ =β4 π πππ ππ =β4 ln π πππ+π‘πππ +πΆ =β4 ln π’ π’ 2 β πΆ =β4 ln π₯ (π₯+3) 2 β πΆ
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.