Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 7.5: Review.

Similar presentations


Presentation on theme: "Section 7.5: Review."β€” Presentation transcript:

1 Section 7.5: Review

2 3π‘₯ π‘₯ 𝑑π‘₯ Example 1 Solution a: Substitution 𝑒= π‘₯ 2 +4 𝑑π‘₯= 𝑑𝑒 2π‘₯ 𝑑𝑒=2π‘₯𝑑π‘₯ 3π‘₯ π‘₯ 𝑑π‘₯= 3π‘₯ 𝑒 𝑑𝑒 2π‘₯ = 𝑒 𝑑𝑒 = 𝑒 βˆ’ 𝑑𝑒 = 𝑒 βˆ’ βˆ’ 𝐢 =3 𝑒 𝐢 =3 π‘₯ 𝐢

3 Solution b: Trig Substitution
3π‘₯ π‘₯ 𝑑π‘₯= 3π‘₯ π‘₯ 𝑑π‘₯ π‘₯=2 π‘‘π‘Žπ‘› πœƒ 𝑑π‘₯=2 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ π‘₯ = 4 π‘‘π‘Žπ‘› 2 πœƒ+4 = 4( π‘‘π‘Žπ‘› 2 πœƒ+1) =2π‘ π‘’π‘πœƒ 3π‘₯ π‘₯ 𝑑π‘₯= 3(2π‘‘π‘Žπ‘›πœƒ) 2π‘ π‘’π‘πœƒ 2 𝑠𝑒𝑐 2 πœƒπ‘‘πœƒ =6 π‘‘π‘Žπ‘›πœƒ π‘ π‘’π‘πœƒ π‘‘πœƒ =6π‘ π‘’π‘πœƒ+𝐢 =3 2π‘ π‘’π‘πœƒ +𝐢 =3 π‘₯ 𝐢

4 π‘₯ 3 ln π‘₯𝑑π‘₯ = π‘₯ 4 4 ln π‘₯ βˆ’ ( π‘₯ 4 4 )( 1 π‘₯ )𝑑π‘₯
Example 2 Solution: Integration by parts 𝑒= ln π‘₯ 𝑑𝑣= π‘₯ 3 𝑑π‘₯ 𝑑𝑒= 1 π‘₯ 𝑣= π‘₯ 4 4 π‘₯ 3 ln π‘₯𝑑π‘₯ = π‘₯ ln π‘₯ βˆ’ ( π‘₯ )( 1 π‘₯ )𝑑π‘₯ = π‘₯ ln π‘₯ βˆ’ π‘₯ 3 𝑑π‘₯ = π‘₯ ln π‘₯ βˆ’ π‘₯ C = π‘₯ ln π‘₯ βˆ’ π‘₯ 𝐢

5 Num degree > Den degree
Example 3 Solution: Num degree > Den degree Apply long division algorithm: 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯( π‘₯ = 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯ 3 +4π‘₯ First divide the leading term 2π‘₯ 5 of the numerator polynomial by the leading term π‘₯ 3 of the divisor and write the answer 2π‘₯ 2 on the top line: 2π‘₯ 2 Now multiply this term 2 π‘₯ 2 by the divisor π‘₯ 3 +4π‘₯, and write the answer 2π‘₯ 2 π‘₯ 3 +4π‘₯ = 2π‘₯ 5 + 8π‘₯ 3 under the numerator polynomial, lining up terms of equal degree:

6 2π‘₯ 2 2π‘₯ 5 + 8π‘₯ 3 Next subtract the last line from line above it: 2π‘₯ 2 2π‘₯ 5 + 8π‘₯ 3 Now repeat the procedure: divide the leading term βˆ’8π‘₯ 3 of the polynomial on the last line by the leading term π‘₯ 3 of the divisor to obtain βˆ’8 and add this term βˆ’8 on the top line: 2π‘₯ 2 βˆ’8 2π‘₯ 5 + 8π‘₯ 3

7 Then multiply β€œback”: βˆ’8 π‘₯ 3 +4π‘₯ = βˆ’8π‘₯ 3 βˆ’32π‘₯ and write the
answer under the last line polynomial, lining up terms of equal degree: 2π‘₯ 2 βˆ’8 2π‘₯ 5 + 8π‘₯ 3 βˆ’8π‘₯ 3 βˆ’32π‘₯ Next subtract the last line from line above it: 2π‘₯ 2 βˆ’8 2π‘₯ 5 + 8π‘₯ 3 βˆ’8π‘₯ 3 βˆ’32π‘₯ 29π‘₯+4

8 Num degree < Den degree
You’re done since the degree of 29π‘₯+4 is 1, which is less than the degree of divisor, which is 3. Consequently, 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯( π‘₯ = 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯ 3 +4π‘₯ = 2π‘₯ 2 βˆ’8+ 29π‘₯+4 π‘₯ 3 +4π‘₯ 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯( π‘₯ 𝑑π‘₯= 2π‘₯ 2 βˆ’8+ 29π‘₯+4 π‘₯ 3 +4π‘₯ 𝑑π‘₯ = 2π‘₯ 2 𝑑π‘₯βˆ’ 8𝑑π‘₯ π‘₯+4 π‘₯ 3 +4π‘₯ 𝑑π‘₯ Next, apply partial fraction for πŸπŸ—π’™+πŸ’ 𝒙 πŸ‘ +πŸ’π’™ Num degree < Den degree

9 29π‘₯+4 π‘₯ 3 +4π‘₯ = 29π‘₯+4 π‘₯( π‘₯ 2 +4) = 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +4
= 𝐴 π‘₯ 𝐡π‘₯+𝐢 π‘₯ π‘₯( π‘₯ 2 +4) Thus, 𝐴 π‘₯ 𝐡π‘₯+𝐢 π‘₯=29π‘₯+4 𝐴+𝐡 π‘₯ 2 +𝐢π‘₯+4𝐴=0 π‘₯ 2 +29π‘₯+4 𝐴+𝐡=0 𝐢=29 4𝐴=4 𝐴=1, 𝐡=βˆ’1, 𝐢=29 Therefore, 29π‘₯+4 π‘₯ 3 +4π‘₯ = 29π‘₯+4 π‘₯( π‘₯ 2 +4) = 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +4 = 1 π‘₯ + (βˆ’1)π‘₯+29 π‘₯ 2 +4 = 1 π‘₯ + (βˆ’1)π‘₯ π‘₯ π‘₯ 2 +4

10 2 π‘₯ 5 βˆ’3π‘₯+4 π‘₯( π‘₯ 2 +4) 𝑑π‘₯= 2π‘₯ 2 𝑑π‘₯βˆ’ 8𝑑π‘₯+ 29π‘₯+4 π‘₯ 3 +4π‘₯ 𝑑π‘₯
= 2π‘₯ 2 𝑑π‘₯βˆ’ 8𝑑π‘₯ π‘₯ 𝑑π‘₯+ (βˆ’1)π‘₯ π‘₯ 2 +4 𝑑π‘₯ π‘₯ 2 +4 𝑑π‘₯ =2 π‘₯ βˆ’8π‘₯+ ln π‘₯ βˆ’ ln π‘₯ tan βˆ’1 π‘₯ 2 +𝐢

11 Example 4 Solution a: Known formula π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯= sec βˆ’1 π‘₯+𝐢 3 π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯= π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯ =3 sec βˆ’1 π‘₯+𝐢 Solution b: Trig Substitution π‘₯=π‘ π‘’π‘πœƒ πœƒ= sec βˆ’1 π‘₯ 𝑑π‘₯=π‘ π‘’π‘πœƒ π‘‘π‘Žπ‘›πœƒ π‘‘πœƒ π‘₯ 2 βˆ’1 =π‘‘π‘Žπ‘›πœƒ

12 3 π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯= π‘₯ π‘₯ 2 βˆ’1 𝑑π‘₯ = π‘ π‘’π‘πœƒ π‘‘π‘Žπ‘›πœƒ π‘ π‘’π‘πœƒ π‘‘π‘Žπ‘›πœƒ π‘‘πœƒ =3 1π‘‘πœƒ =3πœƒ+𝐢 =3 sec βˆ’1 π‘₯+𝐢

13 Num degree < Den degree
Example 5 Solution: Partial Fraction Num degree < Den degree π‘₯ 2 βˆ’4 π‘₯( π‘₯ 2 +5) 𝑑π‘₯= 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +5 𝑑π‘₯ π‘₯ 2 βˆ’4 π‘₯( π‘₯ 2 +5) = 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +5 = 𝐴 π‘₯ 𝐡π‘₯+𝐢 π‘₯ π‘₯( π‘₯ 2 +5) 1π‘₯ 2 +0π‘₯βˆ’4= 𝐴+𝐡 π‘₯ 2 +𝐢π‘₯+5𝐴 1=𝐴+𝐡 0=𝐢 βˆ’4=5𝐴 𝐴=βˆ’ 𝐡= 𝐢=0

14 π‘₯ 2 βˆ’4 π‘₯( π‘₯ 2 +5) 𝑑π‘₯= 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +5 𝑑π‘₯
Thus, π‘₯ 2 βˆ’4 π‘₯( π‘₯ 2 +5) 𝑑π‘₯= 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +5 𝑑π‘₯ = βˆ’ 4 5 π‘₯ π‘₯ π‘₯ 2 +5 𝑑π‘₯ = βˆ’ 4 5 π‘₯ 𝑑π‘₯ π‘₯ π‘₯ 𝑑π‘₯ =βˆ’ 4 5 ln π‘₯ ln π‘₯ 𝐢

15 Solution: Complete the Square
Example 6 Solution: Complete the Square π‘₯ 2 +6π‘₯βˆ’5= π‘₯ 2 +6π‘₯ βˆ’ βˆ’5 = π‘₯ 2 +6π‘₯+9βˆ’9βˆ’5 = (π‘₯+3) 2 βˆ’14 βˆ’4 π‘₯ 2 +6π‘₯βˆ’5 𝑑π‘₯= βˆ’4 (π‘₯+3) 2 βˆ’14 𝑑π‘₯ Then Substitution 𝑒=π‘₯+3 𝑑𝑒=𝑑π‘₯ βˆ’4 π‘₯ 2 +6π‘₯βˆ’5 𝑑π‘₯= βˆ’4 (π‘₯+3) 2 βˆ’14 𝑑π‘₯=βˆ’ 𝑒 2 βˆ’ 𝑑𝑒

16 π‘ π‘’π‘πœƒ= 𝑒 14 Next Trig Substitution 𝑒= 14 π‘ π‘’π‘πœƒ 𝑑𝑒= 14 π‘ π‘’π‘πœƒ π‘‘π‘Žπ‘›πœƒ π‘‘πœƒ 𝑒 2 βˆ’ = 14( 𝑠𝑒𝑐 2 πœƒβˆ’1) = 14 π‘‘π‘Žπ‘›πœƒ π‘‘π‘Žπ‘›πœƒ= 𝑒 2 βˆ’ βˆ’4 π‘₯ 2 +6π‘₯βˆ’5 𝑑π‘₯= βˆ’4 (π‘₯+3) 2 βˆ’14 𝑑π‘₯=βˆ’ 𝑒 2 βˆ’ 𝑑𝑒 Thus, =βˆ’ π‘‘π‘Žπ‘›πœƒ π‘ π‘’π‘πœƒ π‘‘π‘Žπ‘›πœƒ π‘‘πœƒ =βˆ’4 π‘ π‘’π‘πœƒ π‘‘πœƒ =βˆ’4 ln π‘ π‘’π‘πœƒ+π‘‘π‘Žπ‘›πœƒ +𝐢 =βˆ’4 ln 𝑒 𝑒 2 βˆ’ 𝐢 =βˆ’4 ln π‘₯ (π‘₯+3) 2 βˆ’ 𝐢


Download ppt "Section 7.5: Review."

Similar presentations


Ads by Google