Presentation is loading. Please wait.

Presentation is loading. Please wait.

CorePure2 Chapter 3 :: Methods in Calculus

Similar presentations


Presentation on theme: "CorePure2 Chapter 3 :: Methods in Calculus"β€” Presentation transcript:

1 CorePure2 Chapter 3 :: Methods in Calculus
Last modified: 9th August 2018

2 www.drfrostmaths.com Everything is completely free. Why not register?
Register now to interactively practise questions on this topic, including past paper questions and extension questions (including MAT + UKMT). Teachers: you can create student accounts (or students can register themselves), to set work, monitor progress and even create worksheets. With questions by: Dashboard with points, trophies, notifications and student progress. Questions organised by topic, difficulty and past paper. Teaching videos with topic tests to check understanding.

3 Chapter Overview 1:: Improper Integrals 2:: Mean value of a function
In this chapter, we explore a variety of new techniques for integration, as well as how integration can be applied. 1:: Improper Integrals 2:: Mean value of a function β€œEvaluate 1 ∞ 1 π‘₯ 2 𝑑π‘₯ or show that it is not convergent.” β€œFind the mean value of 𝑓 π‘₯ = π‘₯ over the interval 2,6 .” 3:: Differentiating and integrating inverse trigonometric functions 4:: Integrating using partial fractions. β€œShow that π‘₯ π‘₯ 3 +9π‘₯ 𝑑π‘₯=𝐴 ln π‘₯ 2 π‘₯ 𝐡 arctan π‘₯ 3 +𝑐 ” β€œShow that if 𝑦= arcsin π‘₯ , then 𝑑𝑦 𝑑π‘₯ = 1 1βˆ’ π‘₯ 2 ”

4 Improper Integrals STARTER 1: Determine βˆ’ π‘₯ 2 𝑑π‘₯ . Is there an issue? ? 𝑦 βˆ’ π‘₯ 2 𝑑π‘₯ = βˆ’1 1 π‘₯ βˆ’2 𝑑π‘₯ = βˆ’ π‘₯ βˆ’1 βˆ’1 1 = βˆ’ 1 1 βˆ’ βˆ’ 1 βˆ’1 =βˆ’1βˆ’ +1=βˆ’2 What’s odd is the we ended up with a negative value. But the whole graph is above the π‘₯ axis! The problem is related to integrating over a discontinuity, i.e. the function is not defined for the entire interval [βˆ’1,1], notably where π‘₯=0. We will see when this causes and issue and when it does not. We say the definite integral does not exist. π‘₯ βˆ’1 1 STARTER 2: Determine 1 ∞ 1 π‘₯ 2 𝑑π‘₯ . Is there an issue? ? (Note: the below is seriously dodgy maths as we’re not allowed to use ∞ in calculations – we’ll look at the proper way to write this in a sec) βˆ’ π‘₯ βˆ’1 1 ∞ = βˆ’ 1 ∞ βˆ’ βˆ’ 1 1 =0+1=1 Although the graph is extending to infinity, the area is finite because the 𝑦 values converge towards 0. The result is therefore valid this time. This is an example of an improper integral and because the value converged, we say the definite integral exists. 𝑦 π‘₯ 1

5 Improper Integrals STARTER 3: Determine π‘₯ 𝑑π‘₯ . Is there an issue? ? 𝑦 π‘₯ 𝑑π‘₯ = βˆ’1 1 π‘₯ βˆ’ 𝑑π‘₯ = 2 π‘₯ =2 1 βˆ’2 0 =2 This is similar to the second example. Although π‘¦β†’βˆž as π‘₯β†’0 (and not defined when π‘₯=0), the area is convergent and therefore finite. The result of 2 is therefore valid. π‘₯ 1 ! The integral π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯ is improper if either: One or both of the limits is infinite 𝑓(π‘₯) is undefined at π‘₯=π‘Ž, π‘₯=𝑏 are another point in the interval [π‘Ž,𝑏]. We’ve seen use of improper integrals with the normal distribution (Stats Year 2), which has the probability function: 𝑝 𝑧 = 1 2πœ‹ 𝑒 𝑧 2 2 The 𝑧 table determines the probability up to a particular value of 𝑧. So πœ™ 𝑧 =𝑃 𝑍≀𝑧 = βˆ’βˆž 𝑧 𝑝 π‘₯ 𝑑π‘₯ . As the area under the whole graph is 1, the improper integral βˆ’βˆž ∞ 𝑝 π‘₯ 𝑑π‘₯ =1 𝑝(𝑧) 𝑧

6 Examples ! To find π‘Ž ∞ 𝑓 π‘₯ 𝑑π‘₯ , determine lim tβ†’βˆž π‘Ž 𝑑 𝑓 π‘₯ 𝑑π‘₯
As mentioned, we can’t use ∞ in calculations directly. We can make use of the π‘™π‘–π‘š function we saw in differentiation by first principles. Evaluate 1 ∞ 1 π‘₯ 2 𝑑π‘₯ or show that it is not convergent. Evaluate 1 ∞ 1 π‘₯ 𝑑π‘₯ or show that it is not convergent. ? 1 ∞ 1 π‘₯ 𝑑π‘₯ = lim π‘‘β†’βˆž 1 𝑑 1 π‘₯ 𝑑π‘₯ = lim π‘‘β†’βˆž ln π‘₯ 1 𝑑 = lim π‘‘β†’βˆž ln 𝑑 βˆ’ ln 1 But as π‘‘β†’βˆž, ln 𝑑 β†’βˆž so 1 ∞ 1 π‘₯ 𝑑π‘₯ does not converge. ? 1 ∞ 1 π‘₯ 2 𝑑π‘₯ = lim π‘‘β†’βˆž 1 𝑑 1 π‘₯ 2 𝑑π‘₯ = lim π‘‘β†’βˆž βˆ’ 1 π‘₯ 1 𝑑 = lim π‘‘β†’βˆž βˆ’ 1 𝑑 +1 =1 So 1 ∞ 1 π‘₯ 2 𝑑π‘₯ converges to 1. Just For Your Interest This can be used to prove that the β€˜harmonic series’ 𝟏+ 𝟏 𝟐 + 𝟏 πŸ‘ + 𝟏 πŸ’ +… is divergent. The areas of the below rectangles are 1Γ—1, 1Γ— 1 2 , 1Γ— 1 3 and so on, i.e. their total area is the harmonic series. But the blue area 1 ∞ 1 π‘₯ 𝑑π‘₯ , which is smaller, is divergent. Therefore the harmonic series must also be divergent. 𝑦 π‘₯ 1 2 3 4

7 When 𝑓(π‘₯) not defined for some value
We need to avoid values with the range [π‘Ž,𝑏] for which the expression is not defined. But just as we avoided ∞ by considering the limit as π‘‘β†’βˆž, we can similarly find what the area converges to as π‘₯ tends towards the undefined value. Evaluate π‘₯ 2 𝑑π‘₯ or show that it is not convergent. Evaluate π‘₯ 4βˆ’ π‘₯ 2 𝑑π‘₯ or show that it is not convergent. ? ? 1 π‘₯ 2 is not defined for 0 so consider the area as the lower limit β†’0. π‘₯ 2 𝑑π‘₯ = lim 𝑑→0 𝑑 π‘₯ 2 𝑑π‘₯ = lim 𝑑→0 βˆ’ 1 π‘₯ 𝑑 1 = lim 𝑑→0 βˆ’1+ 1 𝑑 As 𝑑→0, βˆ’1+ 1 𝑑 β†’βˆž so π‘₯ 2 𝑑π‘₯ does not converge. 0 2 π‘₯ 4βˆ’ π‘₯ 2 𝑑π‘₯ = 0 2 π‘₯ 4βˆ’ π‘₯ 2 βˆ’ 𝑑π‘₯ Try 𝑦= 4βˆ’ π‘₯ β†’ 𝑑𝑦 𝑑π‘₯ =βˆ’π‘₯ 4βˆ’ π‘₯ 2 βˆ’ 1 2 ∴ 0 2 π‘₯ 4βˆ’ π‘₯ 2 βˆ’ 𝑑π‘₯ = lim 𝑑→2 0 𝑑 π‘₯ 4βˆ’ π‘₯ 2 βˆ’ 𝑑π‘₯ = lim 𝑑→2 βˆ’ 4βˆ’ π‘₯ 𝑑 = lim 𝑑→2 βˆ’ 4βˆ’ 𝑑 =2 So π‘₯ 4βˆ’ π‘₯ 2 𝑑π‘₯ converges to 2. β€œConsider and scale” method Undefined when π‘₯=2

8 When integrating between βˆ’βˆž and ∞
desired range of limits βˆ’βˆž βˆ’2 βˆ’1 1 2 3 4 5 +∞ 6 7 Suppose we want βˆ’βˆž ∞ 𝑓(π‘₯) 𝑑π‘₯. How could evaluate this? We could integrate for example between βˆ’βˆž and 0, and between 0 and +∞, using limits as appropriate (but any finite value would work). That way we are only limiting towards one value at a time. βˆ’βˆž ∞ 𝑓(π‘₯) 𝑑π‘₯= lim π‘‘β†’βˆ’βˆž 𝑑 0 𝑓 π‘₯ 𝑑π‘₯ + lim 𝑑→+∞ 0 𝑑 𝑓 π‘₯ 𝑑π‘₯ ? [Textbook] (a) Find π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯ (b) Hence show that βˆ’βˆž ∞ π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯ converges and find its value. βˆ’βˆž ∞ π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯= βˆ’βˆž 0 π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯+ 0 ∞ π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯ = lim π‘‘β†’βˆ’βˆž βˆ’ 1 2 𝑒 βˆ’ π‘₯ 2 𝑑 lim π‘‘β†’βˆž βˆ’ 1 2 𝑒 βˆ’ π‘₯ 𝑑 =… =βˆ’ =0 a ? Try 𝑦= 𝑒 βˆ’ π‘₯ 2 , then 𝑑𝑦 𝑑π‘₯ =βˆ’2π‘₯ 𝑒 βˆ’ π‘₯ 2 ∴ π‘₯ 𝑒 βˆ’ π‘₯ 2 𝑑π‘₯ =βˆ’ 1 2 𝑒 βˆ’ π‘₯ 2 +𝑐 b ?

9 Exercise 3A Pearson Core Pure Year 2 Pages 56-58

10 The Mean Value of a Function
How would we find the mean of a set of values 𝑦 values 𝑦 1 , 𝑦 2 ,…, 𝑦 𝑛 ? So the question then is, can we extend this to the continuous world, with a function 𝑦=𝑓(π‘₯), between π‘₯=π‘Ž and π‘₯=𝑏? 𝑦 4 𝑦 𝑦 π‘Ž 𝑏 𝑦 2 𝑦 3 𝑦 1 ? 𝑦 = 𝑦 1 + 𝑦 2 +…+ 𝑦 𝑛 𝑛 continuous equivalent? Integration can be thought of as the continuous version of summation of the 𝑦 values. ? 𝑦 = π‘Ž 𝑏 𝑓 π‘₯ 𝑑π‘₯ π‘βˆ’π‘Ž ? The width of the interval, π‘βˆ’π‘Ž, could (sort of) be thought of as the number of points in the interval on an infinitesimally small scale. ! The mean value of the function 𝑦=𝑓(π‘₯) over the interval [π‘Ž,𝑏] is given by 1 π‘βˆ’π‘Ž 𝑏 π‘Ž 𝑓 π‘₯ 𝑑π‘₯ We write it as 𝑦 or 𝑓 or 𝑦 π‘š .

11 Examples [Textbook] Find the mean value of 𝑓 π‘₯ = π‘₯ over the interval 2,6 . [Textbook] 𝑓 π‘₯ = 4 1+ 𝑒 π‘₯ Show that the mean value of 𝑓(π‘₯) over the interval ln 2 , ln 6 is 4 ln ln 3 Use your answer to part a to find the mean value over the interval [ ln 2 , ln 6 ] of 𝑓 π‘₯ +4. Use geometric considerations to write down the mean value of βˆ’π‘“(π‘₯) over the interval ln 2 , ln 6 ? π‘₯ 𝑑π‘₯ = π‘₯ βˆ’ 1 2 𝑑π‘₯ = π‘₯ = βˆ’ 2 So mean value is βˆ’ βˆ’2 = βˆ’ 2 a ? Using substitution: Let 𝑒= 𝑒 π‘₯ , then 𝑑𝑒 𝑑π‘₯ = 𝑒 π‘₯ So 𝑑π‘₯= 1 𝑒 π‘₯ 𝑑𝑒= 1 𝑒 𝑑𝑒 When π‘₯= ln 2 β†’ 𝑒= 𝑒 ln 2 =2 When π‘₯= ln 6 β†’ 𝑒=6 ln 2 ln 𝑒 π‘₯ 𝑑π‘₯= 𝑒 Γ— 1 𝑒 𝑑𝑒 = 𝑒 1+𝑒 𝑑𝑒 By splitting into partial fractions, we eventually obtain 4 ln Thus mean value is 4 ln ln 6 βˆ’ ln 2 = 4 ln ln 3 This is a bit like a β€˜coding’ question. If the values all increase by 4, so does the mean. 4 ln ln 3 +4 Similarly if we negate all the values, we would also negate the mean. βˆ’ 4 ln ln 3 b ? c ?

12 Just for your interest…
Why does the gradient of the line segment between the first and last point of a function give you the average gradient of the function? When helping some GCSE students revise, I came across this question: π‘Ž,𝑓 π‘Ž 𝑏,𝑓 𝑏 [Edexcel Original SAMs Paper 3H Q14bi] The graph gives information about the variation in the temperature, in °𝐢, of an amount of water that is allowed to cool fromΒ 80°𝐢. Work out the average rate of decrease of the temperature of the water between 𝑑=0Β and 𝑑=800. If 𝑦=𝑓(𝑑) (where 𝑑 is the time and 𝑦 the temperature), then the average rate of change is 𝑓 β€² 𝑑 . Suppose our first and last points were (π‘Ž,𝑓 π‘Ž ) and 𝑏,𝑓 𝑏 Using our mean function formula: 𝑓 β€² 𝑑 = π‘Ž 𝑏 𝑓 β€² 𝑑 𝑑𝑑 π‘βˆ’π‘Ž = 𝑓 𝑑 π‘Ž 𝑏 π‘βˆ’π‘Ž = 𝑓 𝑏 βˆ’π‘“ π‘Ž π‘βˆ’π‘Ž But if we similarly find the gradient between the first and last points. π‘š= Δ𝑦 Ξ”π‘₯ = 𝑓 𝑏 βˆ’π‘“ π‘Ž π‘βˆ’π‘Ž β–‘ To find the β€˜average gradient’, the solution was to simply find the gradient of the straight line segment between the first point (when 𝑑=0) and last point (when 𝑑=800), as the average gradient is the overall change in temperature over the overall time elapsed. I naturally wondered if I could prove it more formally… ME-WOW!

13 Exercise 3B Pearson Core Pure Year 2 Pages 61-62

14 Differentiating inverse trigonometric functions
Show that if 𝑦= arcsin π‘₯ , then 𝑑𝑦 𝑑π‘₯ = 1 1βˆ’ π‘₯ 2 ? π’š= 𝐚𝐫𝐜𝐬𝐒𝐧 𝒙 𝒙= 𝐬𝐒𝐧 π’š 𝒅𝒙 π’…π’š = 𝐜𝐨𝐬 π’š π’…π’š 𝒅𝒙 = 𝟏 𝐜𝐨𝐬 π’š We know that π’”π’Š 𝒏 𝟐 π’š+𝒄𝒐 𝒔 𝟐 π’šβ‰‘πŸ = 𝟏 πŸβˆ’ 𝐬𝐒𝐧 𝟐 π’š = 𝟏 πŸβˆ’ 𝒙 𝟐 Remember that we’re trying to turn cos 𝑦 into an expression in terms of π‘₯; we have to use π‘₯= sin 𝑦 in some way. You then might think β€œOh, I know an identity that relates cos 𝑦 and sin 𝑦 !” ! 𝑑 𝑑π‘₯ arcsin π‘₯ = 1 1βˆ’ π‘₯ 𝑑 𝑑π‘₯ arccos π‘₯ =βˆ’ 1 1βˆ’ π‘₯ 𝑑 𝑑π‘₯ arctan π‘₯ = 1 1+ π‘₯ 2 Given that 𝑦= arcsin π‘₯ 2 find 𝑑𝑦 𝑑π‘₯ ? Using the chain rule: 𝑑𝑦 𝑑π‘₯ = 1 1βˆ’ π‘₯ Γ—2π‘₯ = 2π‘₯ 1βˆ’ π‘₯ 4 (Teacher Note: Those with the original print versions of the new A Level Pure Year 2 textbooks will actually find this material there: it has since been moved to this module)

15 Test Your Understanding
[Textbook] Given that 𝑦= arctan 1βˆ’π‘₯ 1+π‘₯ , find 𝑑𝑦 𝑑π‘₯ Given that 𝑦= arcsec 2π‘₯ , show that 𝑦= 1 π‘₯ 4 π‘₯ 2 βˆ’1 ? (Let’s use the β€˜full’ Chain Rule method this time) Let 𝒖= πŸβˆ’π’™ 𝟏+𝒙 𝒅𝒖 𝒅𝒙 =…=βˆ’ 𝟐 𝟏+𝒙 𝟐 π’š= 𝐚𝐫𝐜𝐭𝐚𝐧 𝒖 ∴ π’…π’š 𝒅𝒖 = 𝟏 𝟏+ 𝒖 𝟐 By the Chain Rule: π’…π’š 𝒅𝒙 = π’…π’š 𝒅𝒖 Γ— 𝒅𝒖 𝒅𝒙 = 𝟏 𝟏+ 𝒖 𝟐 Γ— βˆ’ 𝟐 𝟏+𝒙 𝟐 =… =βˆ’ 𝟏 𝟏+ 𝒙 𝟐 ? sec 𝑦 =2π‘₯ sec 𝑦 tan 𝑦 𝑑𝑦 𝑑π‘₯ =2 𝑑𝑦 𝑑π‘₯ = 2 sec 𝑦 tan 𝑦 𝑑𝑦 𝑑π‘₯ = 2 sec 𝑦 sec 2 𝑦 βˆ’1 𝑑𝑦 𝑑π‘₯ = 2 2π‘₯ 4 π‘₯ 2 βˆ’1 = 1 π‘₯ 4 π‘₯ 2 βˆ’1

16 Exercise 3C Pearson Core Pure Year 2 Pages 61-62

17 Integrating with inverse trigonometric functions
Use an appropriate substitution to show that π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 ? Fro Hint: Think what value of π‘₯ would make 1+ π‘₯ 2 nicely simplify. π‘₯= tan πœƒ ? 𝑑π‘₯ π‘‘πœƒ = sec 2 πœƒ β†’ 𝑑π‘₯= sec 2 πœƒ π‘‘πœƒ π‘₯ 2 𝑑π‘₯ = tan 2 πœƒ sec 2 πœƒ π‘‘πœƒ = 1 π‘‘πœƒ =πœƒ+𝐢 = arctan π‘₯ +𝐢

18 Dealing with 1/( π‘Ž 2 βˆ’ π‘₯ 2 ) , 1/ π‘Ž 2 βˆ’ π‘₯ 2 , ….
From earlier: 1 1βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ +𝐢, π‘₯ <π‘Ž π‘₯ 2 𝑑π‘₯ = arctan π‘₯ +𝐢 Show that π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝑐 where π‘Ž is a positive constant and π‘₯ <π‘Ž. ? 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = π‘Ž 2 1βˆ’ π‘₯ 2 π‘Ž 𝑑π‘₯ = 1 π‘Ž 1βˆ’ π‘₯ 2 π‘Ž 2 𝑑π‘₯ = = 1 π‘Ž βˆ’ π‘₯ π‘Ž 𝑑π‘₯ This looks like a standard result from above. Letting 𝑒= π‘₯ π‘Ž (note 𝑑𝑒=𝑑π‘₯) = 1 π‘Ž βˆ’π‘’ 𝑑𝑒 = arcsin (𝑒) +𝑐 = arcsin π‘₯ π‘Ž +𝑐

19 Example ? [Textbook] Find 4 5+ π‘₯ 2 𝑑π‘₯
! Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 [Textbook] Find π‘₯ 2 𝑑π‘₯ ? 4 5+ π‘₯ 2 𝑑π‘₯ = π‘₯ 2 𝑑π‘₯ = arctan π‘₯ 𝑐

20 Dealing with 1/( π‘Ž 2 βˆ’ 𝑏 2 π‘₯ 2 ) , …. ? ? Find 1 25+9 π‘₯ 2 𝑑π‘₯
Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 Find π‘₯ 2 𝑑π‘₯ Find βˆ’ βˆ’4 π‘₯ 2 𝑑π‘₯ ? = π‘₯ 2 𝑑π‘₯ = 1 9 Γ— π‘Žπ‘Ÿπ‘‘π‘Žπ‘› π‘₯ 𝐢 = arctan 3π‘₯ 5 +𝐢 = βˆ’ βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin 2π‘₯ βˆ’ = πœ‹ 12 βˆ’ βˆ’ πœ‹ 12 = πœ‹ 6 ?

21 Final example ? Find π‘₯+4 1βˆ’4 π‘₯ 2 𝑑π‘₯
Standard results: (in formula booklet) 1 π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = arcsin π‘₯ π‘Ž +𝐢, π‘₯ <π‘Ž π‘Ž 2 + π‘₯ 2 𝑑π‘₯ = 1 π‘Ž arctan π‘₯ π‘Ž +𝐢 Fro Tip: If you have multiple terms being added/subtracted in the numerator, split up the fraction. Find π‘₯+4 1βˆ’4 π‘₯ 2 𝑑π‘₯ ? π‘₯+4 1βˆ’4 π‘₯ 2 𝑑π‘₯ = π‘₯ 1βˆ’4 π‘₯ 2 𝑑π‘₯ βˆ’4 π‘₯ 2 𝑑π‘₯ Deal with each in turn: π‘₯ 1βˆ’4 π‘₯ 2 𝑑π‘₯ = π‘₯ 1βˆ’4 π‘₯ 2 𝑑π‘₯ = βˆ’4 π‘₯ 2 +𝑐 βˆ’4 π‘₯ 2 𝑑π‘₯ = βˆ’ π‘₯ 2 𝑑π‘₯ = βˆ’ π‘₯ 2 𝑑π‘₯ =2 arcsin 2π‘₯ +𝑐 ∴ π‘₯+4 1βˆ’4 π‘₯ 2 𝑑π‘₯ = βˆ’4 π‘₯ arcsin 2π‘₯ +𝑐 π‘Ž= 1 2

22 Exercise 3D Pearson Core Pure Year 2 Pages 67-69

23 Solving using partial fractions
We have already seen in Pure Year 2 how we can use partial fractions to integrate. We can use this to further expand our repertoire of integration techniques for expressions of the form 1 π‘Ž 2 Β± π‘₯ 2 and π‘Ž 2 Β± π‘₯ 2 Prove that π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝑐 ? 1 π‘Ž 2 βˆ’ π‘₯ 2 ≑ 1 π‘Ž+π‘₯ π‘Žβˆ’π‘₯ ≑ 𝐴 π‘Ž+π‘₯ + 𝐡 π‘Žβˆ’π‘₯ 1≑𝐴 π‘Žβˆ’π‘₯ +𝐡(π‘Ž+π‘₯) If π‘₯=π‘Ž β‡’ 1=2π‘Žπ΅ β†’ 𝐡= 1 2π‘Ž If π‘₯=βˆ’π‘Ž β‡’ 1=2π‘Žπ΄ β†’ 𝐴= 1 2π‘Ž ∴ π‘Ž 2 βˆ’ π‘₯ 2 𝑑π‘₯ = 1 2π‘Ž π‘Ž+π‘₯ + 1 π‘Žβˆ’π‘₯ 𝑑π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ βˆ’ ln π‘Žβˆ’π‘₯ = 1 2π‘Ž ln π‘Ž+π‘₯ π‘Žβˆ’π‘₯ +𝑐

24 Partial Fractions involving Quadratic Factors
When you write as partial fractions, ensure you have the most general possible non-top heavy fraction, i.e. the β€˜order’ (i.e. maximum power) of the numerator is one less than the denominator. 1 π‘₯( π‘₯ 2 +1) ≑ 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +1 [Textbook] Show that π‘₯ π‘₯ 3 +9π‘₯ 𝑑π‘₯=𝐴 ln π‘₯ 2 π‘₯ 𝐡 arctan π‘₯ 3 +𝑐 , where 𝐴 and 𝐡 are constants to be found. ? 1+π‘₯ π‘₯ 3 +9π‘₯ 𝑑π‘₯= 1+π‘₯ π‘₯ π‘₯ 𝑑π‘₯= 𝐴 π‘₯ + 𝐡π‘₯+𝐢 π‘₯ 2 +9 1+π‘₯≑𝐴 π‘₯ π‘₯ 𝐡π‘₯+𝐢 … 𝐴= 1 9 , 𝐡=βˆ’ 1 9 , 𝐢=1 1+π‘₯ π‘₯ 3 +9π‘₯ 𝑑π‘₯= π‘₯ 𝑑π‘₯ βˆ’ π‘₯ π‘₯ 𝑑π‘₯ π‘₯ 𝑑π‘₯ = 1 9 ln π‘₯ βˆ’ ln π‘₯ arctan π‘₯ 3 +𝑐 = ln π‘₯ 2 π‘₯ arctan π‘₯ 3 +𝑐

25 Test Your Understanding
If the fraction is top-heavy, you’ll have a quotient. As per Pure Year 2, if the order of numerator and denominator is the same, you’ll need an extra constant term. If the power is 1 greater in the numerator, you’ll need a quotient of 𝐴π‘₯+𝐡, and so on. 4 π‘₯ 2 +π‘₯ π‘₯ 2 +π‘₯ = 4 π‘₯ 2 +π‘₯ π‘₯ π‘₯+1 =𝐴+ 𝐡 π‘₯ + 𝐢 π‘₯+1 [Textbook] (a) Express π‘₯ 4 +π‘₯ π‘₯ 4 +5 π‘₯ as partial fractions. (b) Hence find π‘₯ 4 +π‘₯ π‘₯ 4 +5 π‘₯ 𝑑π‘₯. a ? π‘₯ 4 +π‘₯ π‘₯ 4 +5 π‘₯ 2 +6 =𝐴+ 𝐡π‘₯+𝐢 π‘₯ 𝐷π‘₯+𝐸 π‘₯ 𝐴=1, 𝐡=1, 𝐢=4, 𝐷=βˆ’1, 𝐸=βˆ’9 π‘₯ 4 +π‘₯ π‘₯ 4 +5 π‘₯ 2 +6 =1+ π‘₯+4 π‘₯ 2 +2 βˆ’ π‘₯+9 π‘₯ 2 +3 1+ π‘₯+4 π‘₯ 2 +2 βˆ’ π‘₯+9 π‘₯ 𝑑π‘₯ = 1+ π‘₯ π‘₯ π‘₯ 2 +2 βˆ’ π‘₯ π‘₯ 2 +3 βˆ’ 9 π‘₯ 𝑑π‘₯ =… =π‘₯ ln π‘₯ π‘₯ arctan π‘₯ βˆ’3 3 arctan π‘₯ 𝑐 b ?

26 Exercise 3E Pearson Core Pure Year 2 Pages 72-73


Download ppt "CorePure2 Chapter 3 :: Methods in Calculus"

Similar presentations


Ads by Google