Presentation is loading. Please wait.

Presentation is loading. Please wait.

Section 8.1 Day 1 Adding and Subtracting Polynomials

Similar presentations


Presentation on theme: "Section 8.1 Day 1 Adding and Subtracting Polynomials"β€” Presentation transcript:

1 Section 8.1 Day 1 Adding and Subtracting Polynomials
Algebra 1

2 Learning Targets Define polynomial, trinomial, binomial, and leading coefficient Classify a polynomial by its degree and corresponding name Write a polynomial in standard form Add polynomials Subtract polynomials

3 Topic 1: Classifying Polynomials by Terms
Algebra 1 Section 8.1 Day 1

4 Definitions Monomial: an algebraic expression with one term Polynomial: an algebraic expression that meets the conditions below No division by a variable Exponents must be β‰₯0 Finite number of terms Binomial: an algebraic expression with two terms 7 minutes Trinomial: an algebraic expression with three terms

5 Polynomial 3 π‘₯ 4 βˆ’2 π‘₯ 2 +4π‘₯βˆ’7 Monomial 8 π‘₯ 5 Trinomial 6 π‘₯ 8 +9π‘₯βˆ’5 Binomial 4π‘₯+12 Not Polynomials 9 π‘₯ βˆ’4 +2π‘₯ 4 π‘₯+2 βˆ’10 π‘₯ 2 βˆ’3

6 Classifications and Examples
Degree Degree Classification Type of Polynomial 6Β  Monomial (1) Β πŸ‘π’™βˆ’πŸ“ Binomial (2) 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 Trinomial (3) Β  𝒙 πŸ‘ βˆ’πŸπ’™ Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 Polynomial (5) Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏 Polynomial (6) Example Degree Degree Classification Type of Polynomial 6Β  Β πŸ‘π’™βˆ’πŸ“ 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 Β  𝒙 πŸ‘ βˆ’πŸπ’™ Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏

7 Topic 2: Standard Form of a Polynomial
Algebra 1 Section 8.1 Day 1

8 Standard Form of a Polynomial
Key Terms Standard Form of a Polynomial Terms are listed from the highest degree to the lowest degree. Not in Standard Form 3βˆ’5 π‘₯ 2 +8 π‘₯ 5 βˆ’ π‘₯ 3 In Standard Form 8 π‘₯ 5 βˆ’ π‘₯ 3 βˆ’5 π‘₯ 2 +3 Leading Coefficient The coefficient in front of the highest degree term. Ex: In the previous example, the leading coefficient would be 8

9 Practice Set 1 1. 3 π‘₯ 2 +4 π‘₯ 5 βˆ’7π‘₯ 2. 5π‘¦βˆ’9βˆ’2 𝑦 4 βˆ’6 𝑦 3
Directions: Rewrite the polynomials into standard form. Then, identify the leading coefficient. 1. 3 π‘₯ 2 +4 π‘₯ 5 βˆ’7π‘₯ Standard Form: 4 π‘₯ 5 +3 π‘₯ 2 βˆ’7π‘₯ Leading Coefficient: 4 2. 5π‘¦βˆ’9βˆ’2 𝑦 4 βˆ’6 𝑦 3 Standard Form: βˆ’2 𝑦 4 βˆ’6 𝑦 3 +5π‘¦βˆ’9 Leading Coefficient: βˆ’2

10 Topic 3: Classifying Polynomials by Degree
Algebra 1 Section 8.1 Day 1

11 Definitions Degree of a Polynomial is the largest exponent in the polynomial. Example: The degree of 5 π‘₯ π‘₯ 4 βˆ’1 is 13.

12 Classifications and Examples
Degree Degree Classification Type of Polynomial 6Β  Β πŸ‘π’™βˆ’πŸ“ 1 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 2 Β  𝒙 πŸ‘ βˆ’πŸπ’™ 3 Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 4 Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏 5 Example Degree Degree Classification Type of Polynomial 6Β  Β πŸ‘π’™βˆ’πŸ“ 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 Β  𝒙 πŸ‘ βˆ’πŸπ’™ Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏

13 Classifications and Examples
Degree Degree Classification Type of Polynomial 6Β  Constant Β πŸ‘π’™βˆ’πŸ“ 1 Linear 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 2 Quadratic Β  𝒙 πŸ‘ βˆ’πŸπ’™ 3 Cubic Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 4 Quartic Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏 5 Quintic

14 Classifications and Examples
Degree Degree Classification Type of Polynomial 6Β  Constant Monomial (1) Β πŸ‘π’™βˆ’πŸ“ 1 Linear Binomial (2) 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 2 Quadratic Trinomial (3) Β  𝒙 πŸ‘ βˆ’πŸπ’™ 3 Cubic Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 4 Quartic Polynomial (5) Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏 5 Quintic Polynomial (6)

15 Classifications and Graphs
Example Degree Degree Classification Graphs 6Β  Constant Graph in Calc Β πŸ‘π’™βˆ’πŸ“ 1 Linear

16 Classifications and Graphs
Example Degree Degree Classification Graphs 𝟏 𝟐 𝒙 𝟐 βˆ’πŸ‘π’™+𝟐 2 Quadratic Graph in Calc Β  𝒙 πŸ‘ βˆ’πŸπ’™ 3 Cubic

17 Classifications and Graphs
Example Degree Degree Classification Graphs Β  𝒙 πŸ’ +πŸ‘ 𝒙 πŸ‘ βˆ’πŸ 𝒙 𝟐 βˆ’πŸ•π’™+𝟏 4 Quartic Graph in Calc Β  𝒙 πŸ“ βˆ’πŸ“ 𝒙 πŸ’ +πŸ“ 𝒙 πŸ‘ +πŸ“ 𝒙 𝟐 βˆ’πŸ”π’™+𝟏 5 Quintic

18 Summary of a Polynomial’s Degree
Degree of a Polynomial Largest Exponent Indicates the maximum number of real zeros/roots a function could consist of (could be less) Indicates the maximum number of real solutions a function could have (could be less) Example: πŸ’ 𝒙 πŸ‘ βˆ’πŸπ’™ Largest Exponent: 3 There are 3 real zeros/roots at MOST. There are 3 real solutions at MOST. **Note: Zeros, roots, and solutions essentially represent the same concept.

19 SMART Goal #1 Check in Tracking Sheet Example
Group Leaders 1. On a piece of paper, please track the accomplishments of your group members progress to achieving their goals. 2. If they accomplish the goal the next day, please put a star to represent their success. Tracking Sheet Example Name 1/10 Homework 1/11 1/12 Person 1 None Work on Section 1.2 HW Person 2 Revise Notes Person 3 Make Flash Cards for 1.2 Day 1 Make Flash Cards for 1.2 Day 2 Person 4 Set up time to meet with teacher Meet with teacher for section 1.2


Download ppt "Section 8.1 Day 1 Adding and Subtracting Polynomials"

Similar presentations


Ads by Google