Download presentation
Presentation is loading. Please wait.
Published byDarlene Bryan Modified over 5 years ago
1
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Latent Semantic Indexing (mapping onto a smaller space of latent concepts) Paolo Ferragina Dipartimento di Informatica Università di Pisa
2
Speeding up cosine computation
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Speeding up cosine computation What if we could take our vectors and “pack” them into fewer dimensions (say 50,000100) while preserving distances? Now, O(nm) to compute cos(d,q) for all d Then, O(km+kn) where k << n,m Two methods: “Latent semantic indexing” Random projection
3
Briefly LSI is data-dependent Random projection is data-independent
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Briefly LSI is data-dependent Create a k-dim subspace by eliminating redundant axes Pull together “related” axes – hopefully car and automobile Random projection is data-independent Choose a k-dim subspace that guarantees good stretching properties with high probability between any pair of points. What about polysemy ?
4
Latent Semantic Analysis
Sec. 18.4 Latent Semantic Analysis Latent semantic space: illustrating example courtesy of Susan Dumais
5
Notions from linear algebra
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Notions from linear algebra Matrix A, vector v Matrix transpose (At) Matrix product Rank Eigenvalues l and eigenvector v: Av = lv Example
6
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Overview of LSI Pre-process docs using a technique from linear algebra called Singular Value Decomposition Create a new (smaller) vector space Queries handled (faster) in this new space
7
Singular-Value Decomposition
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Singular-Value Decomposition Recall m n matrix of terms docs, A. A has rank r m,n Define term-term correlation matrix T=AAt T is a square, symmetric m m matrix Let P be m r matrix of eigenvectors of T Define doc-doc correlation matrix D=AtA D is a square, symmetric n n matrix Let R be n r matrix of eigenvectors of D
8
A’s decomposition Rt S P A
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" A’s decomposition Given P (for T, m r) and R (for D, n r) formed by orthonormal columns (unit dot-product) It turns out that A = PSRt Where S is a diagonal matrix with the eigenvalues of T=AAt in decreasing order. mn = mr rn rr Rt S P A
9
Dimensionality reduction
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Dimensionality reduction For some k << r, zero out all but the k biggest eigenvalues in S [choice of k is crucial] Denote by Sk this new version of S, having rank k Typically k is about 100, while r (A’s rank) is > 10,000 document k k k = useless due to 0-col/0-row of Sk r S Sk Rt P Ak A r x n k x n m x r m x k
10
Guarantee Ak is a pretty good approximation to A:
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Guarantee Ak is a pretty good approximation to A: Relative distances are (approximately) preserved Of all m n matrices of rank k, Ak is the best approximation to A wrt the following measures: minB, rank(B)=k ||A-B||2 = ||A-Ak||2 = sk+1 minB, rank(B)=k ||A-B||F2 = ||A-Ak||F2 = sk+12+ sk sr2 Frobenius norm ||A||F2 = s12+ s sr2
11
Reduction We use Xk to define how to project A and Q:
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" R,P are formed by orthonormal eigenvectors of the matrices D,T Reduction Xk = Sk Rt is the doc-matrix k x n, hence reduced to k dim Since we are interested in doc/q correlation, we consider: D=At A =(P S Rt)t (P S Rt) = (SRt)t (SRt) Approx S with Sk, thus get At A Xkt Xk (both are n x n matr.) We use Xk to define how to project A and Q: Xk = Sk Rt , substitute Rt = S-1 Pt A, so get Pkt A In fact, Sk S-1 Pt = Pkt which is a k x m matrix Since Xk plays the role of A, its columns are the projected docs, hence it is enough to multiply Q by Pkt to get the projected query, O(km) time Cost of sim(q,d), for all d, is O(kn+km) instead of O(mn)
12
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Which are the concepts ? c-th concept = c-th row of Pkt (which is k x m) Denote it by Pkt [c], whose size is m = #terms Pkt [c][i] = strength of association between c-th concept and i-th term Projected document: d’j = Pkt dj d’j[c] = strenght of concept c in dj Projected query: q’ = Pkt q q’ [c] = strenght of concept c in q
13
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval"
Random Projections Paolo Ferragina Dipartimento di Informatica Università di Pisa Slides only !
14
An interesting math result
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" An interesting math result Lemma (Johnson-Linderstrauss, ‘82) Let P be a set of n distinct points in m-dimensions. Given e > 0, there exists a function f : P IRk such that for every pair of points u,v in P it holds: (1 - e) ||u - v||2 ≤ ||f(u) – f(v)||2 ≤ (1 + e) ||u-v||2 Where k = O(e-2 log n) f() is called JL-embedding Setting v=0 we also get a bound on f(u)’s stretching!!!
15
What about the cosine-distance ?
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" What about the cosine-distance ? f(u)’s, f(v)’s stretching substituting formula above for ||u-v||2
16
How to compute a JL-embedding?
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" How to compute a JL-embedding? If we set R = ri,j to be a random mx k matrix, where the components are independent random variables with one of the following distributions E[ri,j] = 0 Var[ri,j] = 1
17
Finally... Random projections hide large constants
Prof. Paolo Ferragina, Algoritmi per "Information Retrieval" Finally... Random projections hide large constants k (1/e)2 * log m, so it may be large… it is simple and fast to compute LSI is intuitive and may scale to any k optimal under various metrics but costly to compute, now good libraries indeed
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.