Download presentation
Presentation is loading. Please wait.
1
Geometric application of non-compact ๐ฎ ๐ group
Ivane Javakhishvili Tbilisi State University Faculty of Exact and Natural Sciences Geometric application of non-compact ๐ฎ ๐ group Presenter: Alexandre Gurchumelia Master's supervisor: Merab Gogberashvili
2
Lie algebras in physics
Conservation Laws Symmetries Groups Lie Algebras Noether's theorem ๐ ๐ผ ๐ ๐โ๐ค exp ๐ผ๐ โ๐บ
3
Classification of Lie algebras (with Dynkin diagrams)
Infinite families Exceptional cases ๐ด ๐ ๐บ 2 ๐ต ๐ ๐น 4 ๐ถ ๐ ๐ธ 6 ๐ท ๐ Notation ๐ด ๐ =๐๐ ๐+1 , ๐ถ ๐ =๐๐ 2๐ , ๐ต ๐ =๐๐ 2๐+1 , ๐ท ๐ =๐๐ 2๐ , ๐ is rank ๐ธ 7 ๐ธ 8
4
Something wrong with Poincare groups?
Planck length isnโt supposed to Lorentz contract No division algebra in 3+1 D to describe transformations Why non-compact ๐ฎ ๐ ? ๐บ 2 is automorphism group for octonions Non-compact transformations give us boosts
5
Non-compact ๐ฎ ๐ group ( ๐ฎ ๐ ๐ต๐ช )
Generators ๐ ๐๐ =โ ๐ง ๐ ๐ ๐ ๐ง ๐ + ๐ฆ ๐ ๐ ๐ ๐ฆ ๐ ๐ง ๐ ๐ ๐ ๐ง ๐ โ ๐ฆ ๐ ๐ ๐ ๐ฆ ๐ ๐ 0๐ =โ2๐ก ๐ ๐ ๐ฆ ๐ + ๐ง ๐ ๐ ๐๐ก ๐ ๐๐๐ ๐ฆ ๐ ๐ ๐ ๐ง ๐ โ ๐ฆ ๐ ๐ ๐ ๐ง ๐ ๐ ๐๐ =โ ๐ง ๐ ๐ ๐ ๐ง ๐ + ๐ฆ ๐ ๐ ๐ ๐ฆ ๐ ๐ 11 + ๐ 22 + ๐ 33 =0 (๐,๐=1,2,3) Metric: Space: ๐ ๐ = ๐ฆ ๐ ,๐ก, ๐ง ๐ ๐= ร ร3 Quadratic form: ๐ ๐ ๐๐= ๐ก 2 + ๐ฆ ๐ ๐ง ๐
6
7-dimensional equivalent representation Minkowski-like metric
Cartan Ours Coordinates: ๐= ๐ฆ ๐ ๐ก ๐ง ๐ ๐
= ๐ ๐ ๐ก ๐ฅ ๐ Metric: ๐= ร ร3 โ= 1 3ร โ 1 3ร3 Quadratic form: ๐ ๐ ๐๐= ๐ก 2 + ๐ฆ ๐ ๐ง ๐ ๐
๐ โ๐
= ๐ ๐ ๐ ๐ + ๐ก 2 โ ๐ฅ ๐ ๐ฅ ๐ ๐ฆ ๐ = ๐ ๐ + ๐ฅ ๐ ๐ง ๐ = ๐ ๐ โ ๐ฅ ๐
7
Change of basis Same quadratic form ๐ 2 = ๐ ๐ ๐ ๐ + ๐ก 2 โ ๐ฅ ๐ ๐ฅ ๐
๐ 2 = ๐ ๐ ๐ ๐ + ๐ก 2 โ ๐ฅ ๐ ๐ฅ ๐ Change of basis Generators ๐ ๐ = ๐ณ 0๐ โ ๐ณ ๐ =โ2 ๐ฅ ๐ ๐ ๐๐ก +๐ก ๐ ๐ ๐ฅ ๐ โ 1 2 ๐ ๐๐๐ ๐ ๐ ๐ ๐ ๐ฅ ๐ โ ๐ ๐ ๐ ๐ ๐ฅ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ ๐ ๐น ๐ =โ ๐ณ 0๐ + ๐ณ ๐0 =โ2 ๐ ๐ ๐ ๐๐ก โ๐ก ๐ ๐ ๐ ๐ โ 1 2 ๐ ๐๐๐ ๐ ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ ๐บ ๐ = ๐ ๐๐๐ ๐ณ ๐๐ = ๐ ๐๐๐ ๐ฅ ๐ ๐ ๐ ๐ ๐ + ๐ฅ ๐ ๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ฅ ๐ ๐
๐ = ๐ ๐๐๐ ๐ณ ๐๐ = 1 2 ๐ ๐๐๐ ๐ ๐ ๐ ๐ ๐ ๐ โ ๐ ๐ ๐ ๐ ๐ ๐ + ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ ฮฆ ๐ = ๐ณ ๐๐ = ๐ฅ ๐ ๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ฅ ๐ โ ๐ฅ ๐ ๐ ๐ ๐ ๐ + ๐ ๐ ๐ ๐ ๐ฅ ๐
8
๐ฎ ๐ ๐ต๐ช group transformations in the new basis
Infinitesimal transformations ๐ ๐ โฒ = ๐ ๐ + ๐ ๐๐๐ ๐ ๐ โ ๐ ๐ ๐ ๐ โ2 ๐ ๐ ๐กโ ๐ ๐๐๐ ๐ ๐ + ๐ ๐๐๐ ๐พ ๐ ๐ฅ ๐ โ ๐ฝ ๐ ๐ฅ ๐ ๐ก โฒ =๐ก+2 ๐ ๐ ๐ ๐ + ๐ ๐ ๐ฅ ๐ ๐ฅโฒ ๐ = ๐ฅ ๐ + ๐ ๐๐๐ ๐ ๐ โ ๐ ๐๐๐ ๐พ ๐ ๐ ๐ +2 ๐ ๐ ๐กโ ๐ ๐๐๐ ๐ ๐ + ๐ ๐ ๐ฅ ๐ โ ๐ฝ ๐ ๐ ๐ Finite transformation example exp ๐ 3 ๐
3 ๐
= cos ๐ 3 sin ๐ โ sin ๐ 3 cos ๐ cos ๐ 3 sin ๐ โ sin ๐ 3 cos ๐ ๐ 1 ๐ 2 ๐ 3 ๐ก ๐ฅ 1 ๐ฅ 2 ๐ฅ 3
9
๐ฎ ๐ ๐ต๐ช group transformations in the new basis
Infinitesimal transformations ๐ ๐ โฒ = ๐ ๐ + ๐ ๐๐๐ ๐ ๐ โ ๐ ๐ ๐ ๐ โ2 ๐ ๐ ๐กโ ๐ ๐๐๐ ๐ ๐ + ๐ ๐๐๐ ๐พ ๐ ๐ฅ ๐ โ ๐ฝ ๐ ๐ฅ ๐ ๐ก โฒ =๐ก+2 ๐ ๐ ๐ ๐ + ๐ ๐ ๐ฅ ๐ ๐ฅโฒ ๐ = ๐ฅ ๐ + ๐ ๐๐๐ ๐ ๐ โ ๐ ๐๐๐ ๐พ ๐ ๐ ๐ +2 ๐ ๐ ๐กโ ๐ ๐๐๐ ๐ ๐ + ๐ ๐ ๐ฅ ๐ โ ๐ฝ ๐ ๐ ๐ Finite transformation example exp ๐ 1 ๐ 1 ๐
= ch ๐ sh ๐ ch ๐ โ sh ๐ ch 2 ๐ 1 sh 2 ๐ sh 2 ๐ 1 ch 2 ๐ โ sh ๐ ch ๐ sh ๐ ch ๐ ๐ 1 ๐ 2 ๐ 3 ๐ก ๐ฅ 1 ๐ฅ 2 ๐ฅ 3
10
Casimir Operators ๐๐ ๐ ๐ฟ 2 = ๐ฟ ๐ฅ 2 + ๐ฟ ๐ฆ 2 + ๐ฟ ๐ง 2 ๐ฟ 2 ๐= โ โ+1 ๐
๐ฟ 2 ๐= โ โ+1 ๐ ๐= ๐ โ๐ ๐,๐ Poincarรฉ group ๐ ๐ ๐ ๐ = ๐ ๐ก 2 โ ๐ป 2 ๐ ๐ก 2 โ ๐ป 2 ๐= ๐ 2 ๐ ๐ ๐ = 1 2 ๐ ๐๐๐๐ ๐ ๐๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐=โ ๐ 2 ๐ ๐ +1 ๐ ๐ฎ ๐ ๐ต๐ช 2nd order casimir 6th order In Cartanโs basis: ๐ถ 2 =2 ๐ ๐๐ ๐ ๐๐ โ ๐ ๐0 ๐ 0๐ + ๐ 0๐ ๐ ๐0 ๐ถ 6 =โฆ Our basis: ๐ 2 = ๐ ๐ ๐ 2 โ 1 3 ๐น ๐ 2 + ๐บ ๐ 2 โ ๐
๐ 2 +2 ฮฆ ๐ 2 โฆ
11
2nd order Casimir of ๐ค ๐ algebra
Neglecting change in ๐ ๐๐ ๐ =0 Quadratic form ๐ 2 = ๐ ๐ ๐ ๐ + ๐ก 2 โ ๐ฅ ๐ ๐ฅ ๐ ๐ 2 =6๐ก ๐ ๐๐ก โ ๐ 2 โ ๐ก 2 ๐ 2 ๐ ๐ก 2 + ๐ ๐ 2 + ๐ฅ ๐ 2 ๐ 2 ๐ ๐ฅ ๐ 2 โ ๐ 2 โ ๐ ๐ 2 ๐ 2 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ + ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ +2๐ก ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ก + ๐ ๐ ๐ฟ ๐๐ ๐ ๐ ๐ฅ ๐ ๐ 2 ๐ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐๐๐ ๐ฅ ๐ ๐ฅ ๐ ๐ 2 ๐ ๐ฅ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ 2 ๐ ๐ ๐ ๐ ๐ ๐ ๐ก ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ก ๐ ๐ 2 + ๐ฅ ๐ 2 ๐ 2 ๐ ๐ฅ ๐ 2 โ ๐ 2 โ ๐ ๐ 2 ๐ 2 ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ + ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ +2๐ก ๐ฅ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐๐ก + ๐ ๐ ๐ฟ ๐๐ ๐ ๐ ๐ฅ ๐ ๐ 2 ๐ ๐ ๐ ๐ ๐ฅ ๐ + ๐ ๐๐๐ ๐ฅ ๐ ๐ฅ ๐ ๐ 2 ๐ ๐ฅ ๐ ๐ ๐ฅ ๐ + ๐ ๐ ๐ ๐ ๐ 2 ๐ ๐ ๐ ๐ ๐ ๐
12
Comparing Casimir operators
2nd order Casimir of ๐ค ๐ in 4-vector notation ๐ 2 =โ ๐ ๐ ๐ ๐ ๐ ๐๐ ๐ ๐ ๐ ๐ โ ๐ฅ ๐ ๐ฅ ๐ ๐ ๐ ๐ ๐ + ๐ฅ ๐ ๐ฅ ๐ ๐ ๐ ๐ ๐ +2 ๐ฅ ๐ ๐ ๐ + ๐ ๐ ๐๐๐ ๐ฅ ๐ ๐ฅ ๐ ๐ ๐ ๐ ๐ ๐ 2 = ๐ ๐ ๐ ๐ ๐ ๐ โ 1 ๐ 2 ๐ ๐ ๐ ๐ Poincarรฉ group ๐ ๐ ๐ ๐ = ๐ ๐ก 2 โ ๐ป 2 ๐ ๐ ๐ ๐ ๐ ๐ = 1 2 ๐ ๐๐๐๐ ๐ ๐๐ ๐ ๐
13
Summary & further research
Thank you! Summary & further research ๐บ 2 ๐๐ถ contains Lorentz transformtions with some corrections[1] Casimir found and expressed in terms of Poincare group casimirs Next step: construct field theory with ๐บ 2 ๐๐ถ symmetry Reference [1] Gogberashvili M, Sakhelashvili O, (2015). Geometrical Applications of Split Octonions; Hindawi Publishing Corporation: Adv. Math. Phys. p ; doi: /2015/196708
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.