Presentation is loading. Please wait.

Presentation is loading. Please wait.

Geometric application of non-compact

Similar presentations


Presentation on theme: "Geometric application of non-compact "โ€” Presentation transcript:

1 Geometric application of non-compact ๐‘ฎ ๐Ÿ group
Ivane Javakhishvili Tbilisi State University Faculty of Exact and Natural Sciences Geometric application of non-compact ๐‘ฎ ๐Ÿ group Presenter: Alexandre Gurchumelia Master's supervisor: Merab Gogberashvili

2 Lie algebras in physics
Conservation Laws Symmetries Groups Lie Algebras Noether's theorem ๐‘ž ๐›ผ ๐‘’ ๐‘‹โˆˆ๐”ค exp ๐›ผ๐‘‹ โˆˆ๐บ

3 Classification of Lie algebras (with Dynkin diagrams)
Infinite families Exceptional cases ๐ด ๐‘› ๐บ 2 ๐ต ๐‘› ๐น 4 ๐ถ ๐‘› ๐ธ 6 ๐ท ๐‘› Notation ๐ด ๐‘› =๐‘†๐‘ˆ ๐‘›+1 , ๐ถ ๐‘› =๐‘†๐‘ 2๐‘› , ๐ต ๐‘› =๐‘†๐‘‚ 2๐‘›+1 , ๐ท ๐‘› =๐‘†๐‘‚ 2๐‘› , ๐’ is rank ๐ธ 7 ๐ธ 8

4 Something wrong with Poincare groups?
Planck length isnโ€™t supposed to Lorentz contract No division algebra in 3+1 D to describe transformations Why non-compact ๐‘ฎ ๐Ÿ ? ๐บ 2 is automorphism group for octonions Non-compact transformations give us boosts

5 Non-compact ๐‘ฎ ๐Ÿ group ( ๐‘ฎ ๐Ÿ ๐‘ต๐‘ช )
Generators ๐‘‹ ๐‘›๐‘› =โˆ’ ๐‘ง ๐‘› ๐œ• ๐œ• ๐‘ง ๐‘› + ๐‘ฆ ๐‘› ๐œ• ๐œ• ๐‘ฆ ๐‘› ๐‘ง ๐‘š ๐œ• ๐œ• ๐‘ง ๐‘š โˆ’ ๐‘ฆ ๐‘š ๐œ• ๐œ• ๐‘ฆ ๐‘š ๐‘‹ 0๐‘š =โˆ’2๐‘ก ๐œ• ๐œ• ๐‘ฆ ๐‘š + ๐‘ง ๐‘š ๐œ• ๐œ•๐‘ก ๐œ– ๐‘š๐‘๐‘— ๐‘ฆ ๐‘ ๐œ• ๐œ• ๐‘ง ๐‘— โˆ’ ๐‘ฆ ๐‘— ๐œ• ๐œ• ๐‘ง ๐‘ ๐‘‹ ๐‘š๐‘› =โˆ’ ๐‘ง ๐‘› ๐œ• ๐œ• ๐‘ง ๐‘š + ๐‘ฆ ๐‘š ๐œ• ๐œ• ๐‘ฆ ๐‘› ๐‘‹ 11 + ๐‘‹ 22 + ๐‘‹ 33 =0 (๐‘š,๐‘›=1,2,3) Metric: Space: ๐‘ ๐‘‡ = ๐‘ฆ ๐‘› ,๐‘ก, ๐‘ง ๐‘› ๐‘”= ร— ร—3 Quadratic form: ๐‘ ๐‘‡ ๐‘”๐‘= ๐‘ก 2 + ๐‘ฆ ๐‘› ๐‘ง ๐‘›

6 7-dimensional equivalent representation Minkowski-like metric
Cartan Ours Coordinates: ๐‘= ๐‘ฆ ๐‘› ๐‘ก ๐‘ง ๐‘› ๐“…= ๐œ† ๐‘› ๐‘ก ๐‘ฅ ๐‘› Metric: ๐‘”= ร— ร—3 โ„Š= 1 3ร— โˆ’ 1 3ร—3 Quadratic form: ๐‘ ๐‘‡ ๐‘”๐‘= ๐‘ก 2 + ๐‘ฆ ๐‘› ๐‘ง ๐‘› ๐“… ๐‘‡ โ„Š๐“…= ๐œ† ๐‘› ๐œ† ๐‘› + ๐‘ก 2 โˆ’ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘› ๐‘ฆ ๐‘› = ๐œ† ๐‘› + ๐‘ฅ ๐‘› ๐‘ง ๐‘› = ๐œ† ๐‘› โˆ’ ๐‘ฅ ๐‘›

7 Change of basis Same quadratic form ๐“ˆ 2 = ๐œ† ๐‘› ๐œ† ๐‘› + ๐‘ก 2 โˆ’ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘›
๐“ˆ 2 = ๐œ† ๐‘› ๐œ† ๐‘› + ๐‘ก 2 โˆ’ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘› Change of basis Generators ๐‘‡ ๐‘› = ๐’ณ 0๐‘› โˆ’ ๐’ณ ๐‘› =โˆ’2 ๐‘ฅ ๐‘› ๐œ• ๐œ•๐‘ก +๐‘ก ๐œ• ๐œ• ๐‘ฅ ๐‘› โˆ’ 1 2 ๐œ– ๐‘›๐‘ž๐‘– ๐œ† ๐‘ž ๐œ• ๐œ• ๐‘ฅ ๐‘– โˆ’ ๐œ† ๐‘– ๐œ• ๐œ• ๐‘ฅ ๐‘ž โˆ’ ๐‘ฅ ๐‘ž ๐œ• ๐œ• ๐œ† ๐‘– โˆ’ ๐‘ฅ ๐‘– ๐œ• ๐œ• ๐œ† ๐‘ž ๐น ๐‘› =โˆ’ ๐’ณ 0๐‘˜ + ๐’ณ ๐‘˜0 =โˆ’2 ๐œ† ๐‘› ๐œ• ๐œ•๐‘ก โˆ’๐‘ก ๐œ• ๐œ• ๐œ† ๐‘› โˆ’ 1 2 ๐œ– ๐‘›๐‘ž๐‘– ๐œ† ๐‘ž ๐œ• ๐œ• ๐œ† ๐‘– โˆ’ ๐œ† ๐‘– ๐œ• ๐œ• ๐œ† ๐‘ž โˆ’ ๐‘ฅ ๐‘ž ๐œ• ๐œ• ๐‘ฅ ๐‘– โˆ’ ๐‘ฅ ๐‘– ๐œ• ๐œ• ๐‘ฅ ๐‘ž ๐บ ๐‘˜ = ๐œ– ๐‘˜๐‘š๐‘› ๐’ณ ๐‘š๐‘› = ๐œ– ๐‘˜๐‘›๐‘š ๐‘ฅ ๐‘› ๐œ• ๐œ• ๐œ† ๐‘š + ๐‘ฅ ๐‘š ๐œ• ๐œ• ๐œ† ๐‘› + ๐œ† ๐‘› ๐œ• ๐œ• ๐‘ฅ ๐‘š + ๐œ† ๐‘š ๐œ• ๐œ• ๐‘ฅ ๐‘› ๐‘… ๐‘˜ = ๐œ– ๐‘˜๐‘š๐‘› ๐’ณ ๐‘š๐‘› = 1 2 ๐œ– ๐‘˜๐‘›๐‘š ๐œ† ๐‘› ๐œ• ๐œ• ๐œ† ๐‘š โˆ’ ๐œ† ๐‘š ๐œ• ๐œ• ๐œ† ๐‘› + ๐‘ฅ ๐‘› ๐œ• ๐œ• ๐‘ฅ ๐‘š โˆ’ ๐‘ฅ ๐‘š ๐œ• ๐œ• ๐‘ฅ ๐‘› ฮฆ ๐‘› = ๐’ณ ๐‘˜๐‘˜ = ๐‘ฅ ๐‘› ๐œ• ๐œ• ๐œ† ๐‘› + ๐œ† ๐‘› ๐œ• ๐œ• ๐‘ฅ ๐‘› โˆ’ ๐‘ฅ ๐‘š ๐œ• ๐œ• ๐œ† ๐‘š + ๐œ† ๐‘š ๐œ• ๐œ• ๐‘ฅ ๐‘š

8 ๐‘ฎ ๐Ÿ ๐‘ต๐‘ช group transformations in the new basis
Infinitesimal transformations ๐œ† ๐‘˜ โ€ฒ = ๐œ† ๐‘˜ + ๐œ– ๐‘˜๐‘š๐‘› ๐œ™ ๐‘š โˆ’ ๐œŒ ๐‘š ๐œ† ๐‘› โˆ’2 ๐œ™ ๐‘˜ ๐‘กโˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐œƒ ๐‘š + ๐œ– ๐‘˜๐‘š๐‘› ๐›พ ๐‘š ๐‘ฅ ๐‘› โˆ’ ๐›ฝ ๐‘˜ ๐‘ฅ ๐‘˜ ๐‘ก โ€ฒ =๐‘ก+2 ๐œ™ ๐‘š ๐œ† ๐‘š + ๐œƒ ๐‘š ๐‘ฅ ๐‘š ๐‘ฅโ€ฒ ๐‘˜ = ๐‘ฅ ๐‘˜ + ๐œ– ๐‘˜๐‘š๐‘› ๐œƒ ๐‘š โˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐›พ ๐‘š ๐œ† ๐‘› +2 ๐œƒ ๐‘˜ ๐‘กโˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐œ™ ๐‘š + ๐œŒ ๐‘š ๐‘ฅ ๐‘› โˆ’ ๐›ฝ ๐‘˜ ๐œ† ๐‘˜ Finite transformation example exp ๐œŒ 3 ๐‘… 3 ๐“…= cos ๐œŒ 3 sin ๐œŒ โˆ’ sin ๐œŒ 3 cos ๐œŒ cos ๐œŒ 3 sin ๐œŒ โˆ’ sin ๐œŒ 3 cos ๐œŒ ๐œ† 1 ๐œ† 2 ๐œ† 3 ๐‘ก ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3

9 ๐‘ฎ ๐Ÿ ๐‘ต๐‘ช group transformations in the new basis
Infinitesimal transformations ๐œ† ๐‘˜ โ€ฒ = ๐œ† ๐‘˜ + ๐œ– ๐‘˜๐‘š๐‘› ๐œ™ ๐‘š โˆ’ ๐œŒ ๐‘š ๐œ† ๐‘› โˆ’2 ๐œ™ ๐‘˜ ๐‘กโˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐œƒ ๐‘š + ๐œ– ๐‘˜๐‘š๐‘› ๐›พ ๐‘š ๐‘ฅ ๐‘› โˆ’ ๐›ฝ ๐‘˜ ๐‘ฅ ๐‘˜ ๐‘ก โ€ฒ =๐‘ก+2 ๐œ™ ๐‘š ๐œ† ๐‘š + ๐œƒ ๐‘š ๐‘ฅ ๐‘š ๐‘ฅโ€ฒ ๐‘˜ = ๐‘ฅ ๐‘˜ + ๐œ– ๐‘˜๐‘š๐‘› ๐œƒ ๐‘š โˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐›พ ๐‘š ๐œ† ๐‘› +2 ๐œƒ ๐‘˜ ๐‘กโˆ’ ๐œ– ๐‘˜๐‘š๐‘› ๐œ™ ๐‘š + ๐œŒ ๐‘š ๐‘ฅ ๐‘› โˆ’ ๐›ฝ ๐‘˜ ๐œ† ๐‘˜ Finite transformation example exp ๐œƒ 1 ๐‘‡ 1 ๐“…= ch ๐œƒ sh ๐œƒ ch ๐œƒ โˆ’ sh ๐œƒ ch 2 ๐œƒ 1 sh 2 ๐œƒ sh 2 ๐œƒ 1 ch 2 ๐œƒ โˆ’ sh ๐œƒ ch ๐œƒ sh ๐œƒ ch ๐œƒ ๐œ† 1 ๐œ† 2 ๐œ† 3 ๐‘ก ๐‘ฅ 1 ๐‘ฅ 2 ๐‘ฅ 3

10 Casimir Operators ๐’๐Ž ๐Ÿ‘ ๐ฟ 2 = ๐ฟ ๐‘ฅ 2 + ๐ฟ ๐‘ฆ 2 + ๐ฟ ๐‘ง 2 ๐ฟ 2 ๐œ“= โ„“ โ„“+1 ๐œ“
๐ฟ 2 ๐œ“= โ„“ โ„“+1 ๐œ“ ๐œ“= ๐‘Œ โ„“๐‘š ๐œƒ,๐œ™ Poincarรฉ group ๐‘ƒ ๐œ‡ ๐‘ƒ ๐œ‡ = ๐œ• ๐‘ก 2 โˆ’ ๐›ป 2 ๐œ• ๐‘ก 2 โˆ’ ๐›ป 2 ๐œ“= ๐‘š 2 ๐œ“ ๐‘Š ๐œ‡ = 1 2 ๐œ– ๐œ‡๐œˆ๐œŒ๐œŽ ๐‘€ ๐œˆ๐œŒ ๐‘ƒ ๐œŽ ๐‘Š ๐œ‡ ๐‘Š ๐œ‡ ๐œ“=โˆ’ ๐‘š 2 ๐‘  ๐‘ +1 ๐œ“ ๐‘ฎ ๐Ÿ ๐‘ต๐‘ช 2nd order casimir 6th order In Cartanโ€™s basis: ๐ถ 2 =2 ๐‘‹ ๐‘š๐‘› ๐‘‹ ๐‘›๐‘š โˆ’ ๐‘‹ ๐‘˜0 ๐‘‹ 0๐‘˜ + ๐‘‹ 0๐‘˜ ๐‘‹ ๐‘˜0 ๐ถ 6 =โ€ฆ Our basis: ๐’ž 2 = ๐‘˜ ๐‘‡ ๐‘˜ 2 โˆ’ 1 3 ๐น ๐‘˜ 2 + ๐บ ๐‘˜ 2 โˆ’ ๐‘… ๐‘˜ 2 +2 ฮฆ ๐‘˜ 2 โ€ฆ

11 2nd order Casimir of ๐”ค ๐Ÿ algebra
Neglecting change in ๐€ ๐‘‘๐œ† ๐‘˜ =0 Quadratic form ๐“ˆ 2 = ๐œ† ๐‘› ๐œ† ๐‘› + ๐‘ก 2 โˆ’ ๐‘ฅ ๐‘› ๐‘ฅ ๐‘› ๐’ž 2 =6๐‘ก ๐œ• ๐œ•๐‘ก โˆ’ ๐“ˆ 2 โˆ’ ๐‘ก 2 ๐œ• 2 ๐œ• ๐‘ก 2 + ๐‘˜ ๐“ˆ 2 + ๐‘ฅ ๐‘˜ 2 ๐œ• 2 ๐œ• ๐‘ฅ ๐‘˜ 2 โˆ’ ๐“ˆ 2 โˆ’ ๐œ† ๐‘˜ 2 ๐œ• 2 ๐œ• ๐œ† ๐‘˜ ๐œ† ๐‘˜ ๐œ• ๐œ• ๐œ† ๐‘˜ + ๐‘ฅ ๐‘˜ ๐œ• ๐œ• ๐‘ฅ ๐‘˜ +2๐‘ก ๐‘ฅ ๐‘˜ ๐œ• ๐œ• ๐‘ฅ ๐‘˜ + ๐œ† ๐‘˜ ๐œ• ๐œ• ๐œ† ๐‘˜ ๐œ• ๐œ•๐‘ก + ๐‘š ๐‘› ๐›ฟ ๐‘š๐‘› ๐œ† ๐‘š ๐‘ฅ ๐‘› ๐œ• 2 ๐œ• ๐œ† ๐‘š ๐œ• ๐‘ฅ ๐‘› + ๐œ– ๐‘˜๐‘š๐‘› ๐‘ฅ ๐‘š ๐‘ฅ ๐‘› ๐œ• 2 ๐œ• ๐‘ฅ ๐‘š ๐œ• ๐‘ฅ ๐‘› + ๐œ† ๐‘š ๐œ† ๐‘› ๐œ• 2 ๐œ• ๐œ† ๐‘š ๐œ• ๐œ† ๐‘› ๐‘ก ๐‘ฅ ๐‘˜ ๐œ• ๐œ• ๐‘ฅ ๐‘˜ + ๐œ† ๐‘˜ ๐œ• ๐œ• ๐œ† ๐‘˜ ๐œ• ๐œ•๐‘ก ๐‘˜ ๐“ˆ 2 + ๐‘ฅ ๐‘˜ 2 ๐œ• 2 ๐œ• ๐‘ฅ ๐‘˜ 2 โˆ’ ๐“ˆ 2 โˆ’ ๐œ† ๐‘˜ 2 ๐œ• 2 ๐œ• ๐œ† ๐‘˜ ๐œ† ๐‘˜ ๐œ• ๐œ• ๐œ† ๐‘˜ + ๐‘ฅ ๐‘˜ ๐œ• ๐œ• ๐‘ฅ ๐‘˜ +2๐‘ก ๐‘ฅ ๐‘˜ ๐œ• ๐œ• ๐‘ฅ ๐‘˜ + ๐œ† ๐‘˜ ๐œ• ๐œ• ๐œ† ๐‘˜ ๐œ• ๐œ•๐‘ก + ๐‘š ๐‘› ๐›ฟ ๐‘š๐‘› ๐œ† ๐‘š ๐‘ฅ ๐‘› ๐œ• 2 ๐œ• ๐œ† ๐‘š ๐œ• ๐‘ฅ ๐‘› + ๐œ– ๐‘˜๐‘š๐‘› ๐‘ฅ ๐‘š ๐‘ฅ ๐‘› ๐œ• 2 ๐œ• ๐‘ฅ ๐‘š ๐œ• ๐‘ฅ ๐‘› + ๐œ† ๐‘š ๐œ† ๐‘› ๐œ• 2 ๐œ• ๐œ† ๐‘š ๐œ• ๐œ† ๐‘›

12 Comparing Casimir operators
2nd order Casimir of ๐”ค ๐Ÿ in 4-vector notation ๐’ž 2 =โˆ’ ๐€ ๐’ ๐€ ๐’ ๐œ‚ ๐œ‡๐œˆ ๐œ• ๐œ‡ ๐œ• ๐œˆ โˆ’ ๐‘ฅ ๐œ‡ ๐‘ฅ ๐œ‡ ๐œ• ๐œˆ ๐œ• ๐œˆ + ๐‘ฅ ๐œ‡ ๐‘ฅ ๐œ‡ ๐œ• ๐œ‡ ๐œ• ๐œ‡ +2 ๐‘ฅ ๐œ‡ ๐œ• ๐œ‡ + ๐œŽ ๐œ– ๐œŽ๐œ‡๐œˆ ๐‘ฅ ๐œ‡ ๐‘ฅ ๐œˆ ๐œ• ๐œ‡ ๐œ• ๐œˆ ๐’ž 2 = ๐€ ๐Ÿ ๐‘ƒ ๐œ‡ ๐‘ƒ ๐œ‡ โˆ’ 1 ๐‘š 2 ๐‘Š ๐œ‡ ๐‘Š ๐œ‡ Poincarรฉ group ๐‘ƒ ๐œ‡ ๐‘ƒ ๐œ‡ = ๐œ• ๐‘ก 2 โˆ’ ๐›ป 2 ๐‘Š ๐œ‡ ๐‘Š ๐œ‡ ๐‘Š ๐œ‡ = 1 2 ๐œ– ๐œ‡๐œˆ๐œŒ๐œŽ ๐‘€ ๐œˆ๐œŒ ๐‘ƒ ๐œŽ

13 Summary & further research
Thank you! Summary & further research ๐บ 2 ๐‘๐ถ contains Lorentz transformtions with some corrections[1] Casimir found and expressed in terms of Poincare group casimirs Next step: construct field theory with ๐บ 2 ๐‘๐ถ symmetry Reference [1] Gogberashvili M, Sakhelashvili O, (2015). Geometrical Applications of Split Octonions; Hindawi Publishing Corporation: Adv. Math. Phys. p ; doi: /2015/196708


Download ppt "Geometric application of non-compact "

Similar presentations


Ads by Google