Download presentation
Presentation is loading. Please wait.
1
First week of Homework
2
HW #1 Section 2.1 Pg #3-30 (x3) Solve each inequality and graph each solution set that is not empty. 3) 2π‘<6 6) β12>β4π¦ 9) 3π β1>β4 12) 3π‘>6π‘+12 15) 5 2π’+3 >2 π’β3 +π’ 18) 4π +3 2β3π <5(2βπ ) 21) πβ3 2β4π <7β 8πβ9+π 24) 4 5π₯β 3π₯β7 <2(4π₯β5) Tell whether each statement is true for all real numbers. If you think it is not, give a numerical example to support your answer. 27) If π<π, then π 2 < π 2 30) If π<π and π<π, then πβπ<πβπ
3
HW #2 Section 2.2 Pg. 67-68 OE #7-14; WE #3-36 (x3)
OE: Match each graph with one of the open sentences
4
HW #2 continued WE #3-36 (x3) WE: Solve each conjunction or disjunction and graph each solution set that is not empty 3) 3β€π₯<5 6) π¦β₯β1 or π¦β₯3 9) 0β€π₯β2<3 12) β1β€3π§+2β€8 15) 2π‘+7β₯13 or 5π‘β4<6 18) 2π₯+3>1 and 5π₯β9β€6 21) β3<2β π 3 β€β1 24) 5πβ1>0 and 4π+2<0 27) β 3 4 πβ₯πβ1 or β 3 4 π<π+1 30) β5<2 2βπ +1β€9 33) 0<1βπ₯β€3 or β1β€2π₯β3β€5 36) π₯β€ π₯ ππ π₯β₯2π₯β1 and 1β€ π₯β1 2 β€3
5
HW #3 Section 2.3 Pg. 68 # 16, 17, 23, 26, 28; Pg. 75 #9-30 (x3), 16, 22 WE: Solve each conjunction or disjunction and graph each solution set that is not empty 16) 2π₯+3>1 or 5π₯β9β€6 17) 2π₯+7β₯13 and 5π‘β4<6 23) 7πβ1>π+11 or β11π>β33 26) 3π¦+5β₯2π¦+1>π¦β1 28) 3π§+7β€4π§ and 3π§+7>β4π§ Solve and graph the solution set 9) 2π‘+5 <3 12) 8= 5π¦+2 15) 0β€ 4π’β7 18) 1> 2β0.8π 21) 2π’β1 +3β€6 24) 6+5 2πβ3 β₯4 27) 7+5 π β€1β3 π #30 Graph the solution set of each open sentence 30) 1β€ π β2 β€3 16) 3πβ12 >0 22) 4β 3π+1 <2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.