Presentation is loading. Please wait.

Presentation is loading. Please wait.

Basilio Bona DAUIN – Politecnico di Torino

Similar presentations


Presentation on theme: "Basilio Bona DAUIN – Politecnico di Torino"— Presentation transcript:

1 Basilio Bona DAUIN – Politecnico di Torino
24/02/2019 ROBOTICS 01PEEQW Basilio Bona DAUIN – Politecnico di Torino di 23

2 24/02/2019 Trajectory Planning 2 di 23

3 Planning of the task space variables
24/02/2019 Planning of the task space variables Not all motions are planned in the joint space Very often the planning takes place in the task (cartesian) space, since it is more convenient for the operator This happens when a particular geometric profile must be followed (as in the case of continuous welding or glue deposition, etc. ) or when obstacles in the task space must be avoided Once the cartesian targets are determined, the inverse kinematics function must be invoked, in order to provide joint reference to the control algorithm Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016 di 23

4 Inverse Kinematics Convex Combination Inverse Kinematics
Profile Generator Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

5 Task space planning In the following slides we will consider only the cartesian position planning Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

6 Task space planning: the position variables
The task space position planning starts with the formal definition of the required trajectory The trajectory can be associated to a time law: e.g., it may be necessary to do a certain path with a prescribed velocity (in such tasks as continuous welding, glue deposition, etc.) When the task requires an interaction with the environment, as in manipulation, deburring, or other tasks where the TCP is subject to external forces, it is necessary to plan the position and the force at the same time. This case will not be treated here Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

7 Task space planning: the position variables
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

8 Task space planning: the position variables
Case 1 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

9 Task space planning: the position variables
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

10 Task space planning: the position variables
Case 2 Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

11 Example: arc in the plane
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

12 Example: arc in the plane
Discrete time where Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

13 Example: simple arc in the plane
angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

14 Example: another arc in the plane
Clockwise angle Anti-clockwise angle Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

15 Orientation planning – 1
Orientation is defined by a rotation matrix; during the planning phase it must always remain an orthonormal matrix with positive unit determinant Hence it is wrong to plan the orientation as since Other methods must be used; the most common are three Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

16 Orientation planning – 1
Axis –angle representation: one parameter is planned Planar sliding: two parameters are planned Euler angles: three parameters are planned Initial data common to the three approaches: Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

17 Method 1: axis-angle Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

18 Method 1: axis-angle Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

19 Method 1: axis-angle axis u = -0.5774 theta = 120.0000
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

20 Method 2: planar sliding
Do not confuse k with k Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

21 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

22 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

23 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

24 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

25 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

26 Method 2: planar sliding
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

27 Method 3: Euler angles Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

28 Method 3: Euler angles Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

29 Method 3: Euler angles axis u= -0.5774 0.5774 Delta_eul = 180 90
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

30 Axis-angle vs Euler comparison
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

31 Axis-angle vs Euler comparison
This is the third planned reference frame Axis-angle Euler Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

32 Characteristics of the methods
Axis –angle: is simple to implement and gives a moderately good geometrical insight in the movement performed by the robot Planar sliding: is the most complex, but provides the best geometrical insight Euler angles: is the most simple, but suffers of poor geometrical insight Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

33 Inverse kinematics Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

34 Inverse kinematics Basilio Bona - DAUIN - PoliTo
ROBOTICS 01PEEQW /2016

35 Actuators constraints
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

36 Actuators constraints
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

37 Micro-macro interpolation
Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

38 Micro-macro interpolation
Example Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016

39 Micro-macro interpolation
Zoom Errors True values Approximate values Basilio Bona - DAUIN - PoliTo ROBOTICS 01PEEQW /2016


Download ppt "Basilio Bona DAUIN – Politecnico di Torino"

Similar presentations


Ads by Google