Presentation is loading. Please wait.

Presentation is loading. Please wait.

Basic Principles of Animal Form and Function

Similar presentations


Presentation on theme: "Basic Principles of Animal Form and Function"— Presentation transcript:

1 Basic Principles of Animal Form and Function
Chapter 40 Basic Principles of Animal Form and Function

2 Overview: Diverse Forms, Common Challenges
Anatomy is the study of the biological form of an organism Physiology is the study of the biological functions an organism performs The comparative study of animals reveals that form and function are closely correlated Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

3 Fig. 40-1 Figure 40.1 How does a jackrabbit keep from overheating? For the Discovery Video Human Body, go to Animation and Video Files.

4 Size and shape affect the way an animal interacts with its environment
Concept 40.1: Animal form and function are correlated at all levels of organization Size and shape affect the way an animal interacts with its environment Many different animal body plans have evolved and are determined by the genome Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

5 Physical Constraints on Animal Size and Shape
The ability to perform certain actions depends on an animal’s shape, size, and environment Evolutionary convergence reflects different species’ adaptations to a similar environmental challenge Physical laws impose constraints on animal size and shape Video: Shark Eating Seal Video: Galápagos Sea Lion Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

6 (a) Tuna (b) Penguin (c) Seal Fig. 40-2
Figure 40.2 Convergent evolution in fast swimmers (b) Penguin (c) Seal

7 Exchange with the Environment
An animal’s size and shape directly affect how it exchanges energy and materials with its surroundings Exchange occurs as substances dissolved in the aqueous medium diffuse and are transported across the cells’ plasma membranes A single-celled protist living in water has a sufficient surface area of plasma membrane to service its entire volume of cytoplasm Video: Hydra Eating Daphnia Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

8 Mouth Gastrovascular cavity Exchange Exchange Exchange 0.15 mm 1.5 mm
Fig. 40-3 Mouth Gastrovascular cavity Exchange Exchange Exchange Figure 40.3 Contact with the environment 0.15 mm 1.5 mm (a) Single cell (b) Two layers of cells

9 Multicellular organisms with a sac body plan have body walls that are only two cells thick, facilitating diffusion of materials Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

10 More complex organisms have highly folded internal surfaces for exchanging materials
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

11 Figure 40.4 Internal exchange surfaces of complex animals
External environment CO2 Food O2 Mouth Animal body Respiratory system Blood 50 µm 0.5 cm Lung tissue Nutrients Cells Heart Circulatory system 10 µm Interstitial fluid Digestive system Figure 40.4 Internal exchange surfaces of complex animals Lining of small intestine Excretory system Kidney tubules Anus Unabsorbed matter (feces) Metabolic waste products (nitrogenous waste)

12 Metabolic waste products (nitrogenous waste)
Fig. 40-4a External environment CO2 Food O2 Mouth Animal body Respiratory system Blood Nutrients Cells Heart Circulatory system Interstitial fluid Digestive system Figure 40.4 Internal exchange surfaces of complex animals Excretory system Anus Unabsorbed matter (feces) Metabolic waste products (nitrogenous waste)

13 Lining of small intestine
Fig. 40-4b 0.5 cm Figure 40.4 Internal exchange surfaces of complex animals Lining of small intestine

14 Fig. 40-4c 50 µm Lung tissue Figure 40.4 Internal exchange surfaces of complex animals

15 Kidney tubules 10 µm Fig. 40-4d
Figure 40.4 Internal exchange surfaces of complex animals Kidney tubules

16 In vertebrates, the space between cells is filled with interstitial fluid, which allows for the movement of material into and out of cells A complex body plan helps an animal in a variable environment to maintain a relatively stable internal environment Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

17 Hierarchical Organization of Body Plans
Most animals are composed of specialized cells organized into tissues that have different functions Tissues make up organs, which together make up organ systems Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

18 Table 40-1

19 Tissue Structure and Function
Different tissues have different structures that are suited to their functions Tissues are classified into four main categories: epithelial, connective, muscle, and nervous Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

20 It contains cells that are closely joined
Epithelial Tissue Epithelial tissue covers the outside of the body and lines the organs and cavities within the body It contains cells that are closely joined The shape of epithelial cells may be cuboidal (like dice), columnar (like bricks on end), or squamous (like floor tiles) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

21 The arrangement of epithelial cells may be simple (single cell layer), stratified (multiple tiers of cells), or pseudostratified (a single layer of cells of varying length) Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

22 Epithelial Tissue Cuboidal epithelium Simple columnar epithelium
Fig. 40-5a Epithelial Tissue Cuboidal epithelium Simple columnar epithelium Pseudostratified ciliated columnar epithelium Stratified squamous epithelium Figure 40.5 Structure and function in animal tissues Simple squamous epithelium

23 Apical surface Basal surface Basal lamina 40 µm Fig. 40-5b
Figure 40.5 Structure and function in animal tissues 40 µm

24 Connective tissue mainly binds and supports other tissues
It contains sparsely packed cells scattered throughout an extracellular matrix The matrix consists of fibers in a liquid, jellylike, or solid foundation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

25 There are three types of connective tissue fiber, all made of protein:
Collagenous fibers provide strength and flexibility Elastic fibers stretch and snap back to their original length Reticular fibers join connective tissue to adjacent tissues Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

26 Connective tissue contains cells, including
Fibroblasts that secrete the protein of extracellular fibers Macrophages that are involved in the immune system Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

27 In vertebrates, the fibers and foundation combine to form six major types of connective tissue:
Loose connective tissue binds epithelia to underlying tissues and holds organs in place Cartilage is a strong and flexible support material Fibrous connective tissue is found in tendons, which attach muscles to bones, and ligaments, which connect bones at joints Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

28 Adipose tissue stores fat for insulation and fuel
Blood is composed of blood cells and cell fragments in blood plasma Bone is mineralized and forms the skeleton Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

29 Connective Tissue Loose connective tissue Cartilage Fibrous connective
Fig. 40-5c Connective Tissue Collagenous fiber Loose connective tissue Chondrocytes Cartilage 120 µm 100 µm Elastic fiber Chondroitin sulfate Nuclei Fat droplets Fibrous connective tissue Adipose tissue 30 µm 150 µm Figure 40.5 Structure and function in animal tissues Osteon White blood cells Bone Blood 700 µm 55 µm Central canal Plasma Red blood cells

30 Loose connective tissue
Fig. 40-5d Collagenous fiber 120 µm Figure 40.5 Structure and function in animal tissues Elastic fiber Loose connective tissue

31 Fibrous connective tissue
Fig. 40-5e Nuclei 30 µm Figure 40.5 Structure and function in animal tissues Fibrous connective tissue

32 Bone Osteon 700 µm Central canal Fig. 40-5f
Figure 40.5 Structure and function in animal tissues Central canal Bone

33 Cartilage Chondrocytes 100 µm Chondroitin sulfate Fig. 40-5g
Figure 40.5 Structure and function in animal tissues Chondroitin sulfate Cartilage

34 Adipose tissue Fat droplets 150 µm Fig. 40-5h
Figure 40.5 Structure and function in animal tissues Adipose tissue

35 Blood White blood cells 55 µm Plasma Red blood cells Fig. 40-5i
Figure 40.5 Structure and function in animal tissues Plasma Red blood cells Blood

36 It is divided in the vertebrate body into three types:
Muscle Tissue Muscle tissue consists of long cells called muscle fibers, which contract in response to nerve signals It is divided in the vertebrate body into three types: Skeletal muscle, or striated muscle, is responsible for voluntary movement Smooth muscle is responsible for involuntary body activities Cardiac muscle is responsible for contraction of the heart Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

37 Muscle Tissue Skeletal muscle Cardiac muscle Smooth muscle Multiple
Fig. 40-5j Muscle Tissue Multiple nuclei Muscle fiber Sarcomere Skeletal muscle Nucleus 100 µm Intercalated disk 50 µm Cardiac muscle Figure 40.5 Structure and function in animal tissues Smooth muscle Nucleus Muscle fibers 25 µm

38 Skeletal muscle Multiple nuclei Muscle fiber Sarcomere 100 µm
Fig. 40-5k Multiple nuclei Muscle fiber Sarcomere Figure 40.5 Structure and function in animal tissues 100 µm Skeletal muscle

39 Smooth muscle Nucleus Muscle fibers 25 µm Fig. 40-5l
Figure 40.5 Structure and function in animal tissues 25 µm Smooth muscle

40 Cardiac muscle Nucleus Intercalated disk 50 µm Fig. 40-5m
Figure 40.5 Structure and function in animal tissues Nucleus Intercalated disk 50 µm Cardiac muscle

41 Nervous tissue contains:
Nervous tissue senses stimuli and transmits signals throughout the animal Nervous tissue contains: Neurons, or nerve cells, that transmit nerve impulses Glial cells, or glia, that help nourish, insulate, and replenish neurons Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

42 Nervous Tissue Neuron 40 µm Axons Blood vessel Dendrites Cell body
Fig. 40-5n Nervous Tissue 40 µm Dendrites Cell body Axon Glial cells Neuron Figure 40.5 Structure and function in animal tissues Axons Blood vessel 15 µm

43 Neuron 40 µm Dendrites Cell body Axon Fig. 40-5o
Figure 40.5 Structure and function in animal tissues Neuron

44 Glial cells and axons Glial cells Axons Blood vessel 15 µm Fig. 40-5p
Figure 40.5 Structure and function in animal tissues Blood vessel Glial cells and axons 15 µm

45 Coordination and Control
Control and coordination within a body depend on the endocrine system and the nervous system The endocrine system transmits chemical signals called hormones to receptive cells throughout the body via blood A hormone may affect one or more regions throughout the body Hormones are relatively slow acting, but can have long-lasting effects Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

46 (a) Signaling by hormones (b) Signaling by neurons
Fig. 40-6 Stimulus Stimulus Endocrine cell Neuron Axon Signal Hormone Signal travels along axon to a specific location. Signal travels everywhere via the bloodstream. Blood vessel Signal Axons Figure 40.6 Signaling in the endocrine and nervous systems Response Response (a) Signaling by hormones (b) Signaling by neurons

47 cell via the bloodstream. Stimulus Endocrine Hormone Signal travels
Fig. 40-6a Stimulus Endocrine cell Hormone Signal travels everywhere via the bloodstream. Blood vessel Figure 40.6a Signaling in the endocrine and nervous systems Response (a) Signaling by hormones

48 The nervous system transmits information between specific locations
The information conveyed depends on a signal’s pathway, not the type of signal Nerve signal transmission is very fast Nerve impulses can be received by neurons, muscle cells, and endocrine cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

49 (b) Signaling by neurons
Fig. 40-6b Stimulus Neuron Axon Signal Signal travels along axon to a specific location. Signal Axons Figure 40.6b Signaling in the endocrine and nervous systems Response (b) Signaling by neurons

50 Concept 40.2: Feedback control loops maintain the internal environment in many animals
Animals manage their internal environment by regulating or conforming to the external environment Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

51 Regulating and Conforming
A regulator uses internal control mechanisms to moderate internal change in the face of external, environmental fluctuation A conformer allows its internal condition to vary with certain external changes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

52 (temperature conformer)
Fig. 40-7 40 River otter (temperature regulator) 30 Body temperature (°C) 20 Largemouth bass (temperature conformer) 10 Figure 40.7 The relationship between body and environmental temperatures in an aquatic temperature regulator and an aquatic temperature conformer 10 20 30 40 Ambient (environmental) temperature (ºC)

53 Homeostasis Organisms use homeostasis to maintain a “steady state” or internal balance regardless of external environment In humans, body temperature, blood pH, and glucose concentration are each maintained at a constant level Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

54 Mechanisms of Homeostasis
Mechanisms of homeostasis moderate changes in the internal environment For a given variable, fluctuations above or below a set point serve as a stimulus; these are detected by a sensor and trigger a response The response returns the variable to the set point Animation: Negative Feedback Animation: Positive Feedback Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

55 Response: Heater turned off Room temperature decreases Stimulus:
Fig. 40-8 Response: Heater turned off Room temperature decreases Stimulus: Control center (thermostat) reads too hot Set point: 20ºC Figure 40.8 A nonliving example of negative feedback: control of room temperature Stimulus: Control center (thermostat) reads too cold Room temperature increases Response: Heater turned on

56 Feedback Loops in Homeostasis
The dynamic equilibrium of homeostasis is maintained by negative feedback, which helps to return a variable to either a normal range or a set point Most homeostatic control systems function by negative feedback, where buildup of the end product shuts the system off Positive feedback loops occur in animals, but do not usually contribute to homeostasis Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

57 Alterations in Homeostasis
Set points and normal ranges can change with age or show cyclic variation Homeostasis can adjust to changes in external environment, a process called acclimatization Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

58 Concept 40.3: Homeostatic processes for thermoregulation involve form, function, and behavior
Thermoregulation is the process by which animals maintain an internal temperature within a tolerable range Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

59 Endothermy and Ectothermy
Endothermic animals generate heat by metabolism; birds and mammals are endotherms Ectothermic animals gain heat from external sources; ectotherms include most invertebrates, fishes, amphibians, and non-avian reptiles Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

60 Endothermy is more energetically expensive than ectothermy
In general, ectotherms tolerate greater variation in internal temperature, while endotherms are active at a greater range of external temperatures Endothermy is more energetically expensive than ectothermy Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

61 (a) A walrus, an endotherm
Fig. 40-9 (a) A walrus, an endotherm Figure 40.9 Endothermy and ectothermy (b) A lizard, an ectotherm

62 Variation in Body Temperature
The body temperature of a poikilotherm varies with its environment, while that of a homeotherm is relatively constant Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

63 Balancing Heat Loss and Gain
Organisms exchange heat by four physical processes: conduction, convection, radiation, and evaporation Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

64 Radiation Evaporation Convection Conduction Fig. 40-10
Figure Heat exchange between an organism and its environment Convection Conduction

65 Heat regulation in mammals often involves the integumentary system: skin, hair, and nails
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

66 Hair Epidermis Sweat pore Dermis Muscle Nerve Sweat gland Hypodermis
Fig Hair Epidermis Sweat pore Dermis Muscle Nerve Sweat gland Figure Mammalian integumentary system Hypodermis Adipose tissue Blood vessels Oil gland Hair follicle

67 Five general adaptations help animals thermoregulate:
Insulation Circulatory adaptations Cooling by evaporative heat loss Behavioral responses Adjusting metabolic heat production Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

68 Insulation is a major thermoregulatory adaptation in mammals and birds
Skin, feathers, fur, and blubber reduce heat flow between an animal and its environment Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

69 Circulatory Adaptations
Regulation of blood flow near the body surface significantly affects thermoregulation Many endotherms and some ectotherms can alter the amount of blood flowing between the body core and the skin In vasodilation, blood flow in the skin increases, facilitating heat loss In vasoconstriction, blood flow in the skin decreases, lowering heat loss Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

70 The arrangement of blood vessels in many marine mammals and birds allows for countercurrent exchange
Countercurrent heat exchangers transfer heat between fluids flowing in opposite directions Countercurrent heat exchangers are an important mechanism for reducing heat loss Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

71 Canada goose Bottlenose dolphin Blood flow Artery Vein Vein Artery
Fig Canada goose Bottlenose dolphin Blood flow Artery Vein Vein Artery 35ºC 33º Figure Countercurrent heat exchangers 30º 27º 20º 18º 10º

72 Some bony fishes and sharks also use countercurrent heat exchanges
Many endothermic insects have countercurrent heat exchangers that help maintain a high temperature in the thorax Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

73 Cooling by Evaporative Heat Loss
Many types of animals lose heat through evaporation of water in sweat Panting increases the cooling effect in birds and many mammals Sweating or bathing moistens the skin, helping to cool an animal down Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

74 Behavioral Responses Both endotherms and ectotherms use behavioral responses to control body temperature Some terrestrial invertebrates have postures that minimize or maximize absorption of solar heat Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

75 Fig Figure Thermoregulatory behavior in a dragonfly

76 Adjusting Metabolic Heat Production
Some animals can regulate body temperature by adjusting their rate of metabolic heat production Heat production is increased by muscle activity such as moving or shivering Some ectotherms can also shiver to increase body temperature Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

77 O2 consumption (mL O2/hr) per kg
Fig RESULTS 120 100 80 O2 consumption (mL O2/hr) per kg 60 40 Figure How does a Burmese python generate heat while incubating eggs? 20 5 10 15 20 25 30 35 Contractions per minute

78 Time from onset of warm-up (min)
Fig PREFLIGHT PREFLIGHT WARM-UP FLIGHT 40 Thorax 35 Temperature (ºC) 30 Abdomen Figure Preflight warm-up in the hawkmoth 25 2 4 Time from onset of warm-up (min)

79 Acclimatization in Thermoregulation
Birds and mammals can vary their insulation to acclimatize to seasonal temperature changes When temperatures are subzero, some ectotherms produce “antifreeze” compounds to prevent ice formation in their cells Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

80 Physiological Thermostats and Fever
Thermoregulation is controlled by a region of the brain called the hypothalamus The hypothalamus triggers heat loss or heat generating mechanisms Fever is the result of a change to the set point for a biological thermostat Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

81 Sweat glands secrete sweat, which evaporates, cooling the body.
Fig Sweat glands secrete sweat, which evaporates, cooling the body. Thermostat in hypothalamus activates cooling mechanisms. Blood vessels in skin dilate: capillaries fill; heat radiates from skin. Body temperature decreases; thermostat shuts off cooling mechanisms. Increased body temperature Homeostasis: Internal temperature of 36–38°C Body temperature increases; thermostat shuts off warming mechanisms. Decreased body temperature Figure The thermostatic function of the hypothalamus in human thermoregulation Blood vessels in skin constrict, reducing heat loss. Thermostat in hypothalamus activates warming mechanisms. Skeletal muscles contract; shivering generates heat.

82 Concept 40.4: Energy requirements are related to animal size, activity, and environment
Bioenergetics is the overall flow and transformation of energy in an animal It determines how much food an animal needs and relates to an animal’s size, activity, and environment Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

83 Energy Allocation and Use
Animals harvest chemical energy from food Energy-containing molecules from food are usually used to make ATP, which powers cellular work After the needs of staying alive are met, remaining food molecules can be used in biosynthesis Biosynthesis includes body growth and repair, synthesis of storage material such as fat, and production of gametes Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

84 Organic molecules in food External environment Animal body
Fig Organic molecules in food External environment Animal body Digestion and absorption Heat Energy lost in feces Nutrient molecules in body cells Energy lost in nitrogenous waste Carbon skeletons Cellular respiration Heat Figure Bioenergetics of an animal: an overview ATP Biosynthesis Cellular work Heat Heat

85 Quantifying Energy Use
Metabolic rate is the amount of energy an animal uses in a unit of time One way to measure it is to determine the amount of oxygen consumed or carbon dioxide produced Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

86 Fig Figure Measuring rate of oxygen consumption in a running pronghorn

87 Minimum Metabolic Rate and Thermoregulation
Basal metabolic rate (BMR) is the metabolic rate of an endotherm at rest at a “comfortable” temperature Standard metabolic rate (SMR) is the metabolic rate of an ectotherm at rest at a specific temperature Both rates assume a nongrowing, fasting, and nonstressed animal Ectotherms have much lower metabolic rates than endotherms of a comparable size Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

88 Influences on Metabolic Rate
Metabolic rates are affected by many factors besides whether an animal is an endotherm or ectotherm Two of these factors are size and activity Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

89 Size and Metabolic Rate
Metabolic rate per gram is inversely related to body size among similar animals Researchers continue to search for the causes of this relationship The higher metabolic rate of smaller animals leads to a higher oxygen delivery rate, breathing rate, heart rate, and greater (relative) blood volume, compared with a larger animal Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

90 Figure 40.19 The relationship of metabolic rate to body size
103 Elephant 102 Horse Human 10 Sheep BMR (L O2/hr) (Iog scale) Cat Dog 1 Rat 10–1 Ground squirrel Shrew Mouse Harvest mouse 10–2 10–3 10–2 10–1 1 10 102 103 Body mass (kg) (log scale) (a) Relationship of BMR to body size 8 Shrew 7 6 Figure The relationship of metabolic rate to body size 5 BMR (L O2/hr) (per kg) 4 3 Harvest mouse 2 Mouse Sheep Rat Human Elephant 1 Cat Dog Ground squirrel Horse 10–3 10–2 10–1 1 10 102 103 Body mass (kg) (log scale) (b) Relationship of BMR per kilogram of body mass to body size

91 BMR (L O2/hr) (log scale)
Fig a 103 Elephant 102 Horse Human Sheep 10 BMR (L O2/hr) (log scale) Cat Dog 1 Rat 10–1 Ground squirrel Shrew Figure The relationship of metabolic rate to body size Mouse Harvest mouse 10–2 10–3 10–2 10–1 1 10 102 103 Body mass (kg) (log scale) (a) Relationship of BMR to body size

92 Body mass (kg) (log scale)
Fig b 8 Shrew 7 6 5 BMR (L O2/hr) (per kg) 4 Harvest mouse 3 2 Mouse Sheep Rat Human Elephant Figure The relationship of metabolic rate to body size Cat 1 Dog Horse Ground squirrel 10–3 10–2 10–1 1 10 102 103 Body mass (kg) (log scale) (b) Relationship of BMR per kilogram of body mass to body size

93 Activity and Metabolic Rate
Activity greatly affects metabolic rate for endotherms and ectotherms In general, the maximum metabolic rate an animal can sustain is inversely related to the duration of the activity Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

94 Energy Budgets Different species use energy and materials in food in different ways, depending on their environment Use of energy is partitioned to BMR (or SMR), activity, thermoregulation, growth, and reproduction Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

95 from temperate climate
Fig Endotherms Ectotherm 800,000 Reproduction Basal (standard) metabolism Thermoregulation Growth Activity Annual energy expenditure (kcal/hr) 340,000 8,000 4,000 Figure Energy budgets for four animals 60-kg female human from temperate climate 4-kg male Adélie penguin from Antarctica (brooding) 0.025-kg female deer mouse from temperate North America 4-kg female eastern indigo snake

96 from temperate climate
Fig a 800,000 Reproduction Thermoregulation Basal (standard) metabolism Growth Activity Annual energy expenditure (kcal/hr) Figure Energy budgets for four animals 60-kg female human from temperate climate

97 4-kg male Adélie penguin from Antarctica (brooding)
Fig b Basal (standard) metabolism Reproduction Thermoregulation Annual energy expenditure (kcal/yr) Activity 340,000 Figure Energy budgets for four animals 4-kg male Adélie penguin from Antarctica (brooding)

98 0.025-kg female deer mouse from temperate North America
Fig c Basal (standard) metabolism Reproduction Thermoregulation Annual energy expenditure (kcal/yr) Activity Figure Energy budgets for four animals 4,000 0.025-kg female deer mouse from temperate North America

99 4-kg female eastern indigo snake
Fig d Basal (standard) metabolism Reproduction Growth Annual energy expenditure (kcal/yr) Activity Figure Energy budgets for four animals 8,000 4-kg female eastern indigo snake

100 Torpor and Energy Conservation
Torpor is a physiological state in which activity is low and metabolism decreases Torpor enables animals to save energy while avoiding difficult and dangerous conditions Hibernation is long-term torpor that is an adaptation to winter cold and food scarcity Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

101 Metabolic rate (kcal per day)
Fig Additional metabolism that would be necessary to stay active in winter 200 Actual metabolism Metabolic rate (kcal per day) 100 Arousals 35 Body temperature 30 25 20 Temperature (°C) 15 10 Figure Body temperature and metabolism during hibernation in Belding’s ground squirrels 5 Outside temperature –5 Burrow temperature –10 –15 June August October December February April

102 Estivation, or summer torpor, enables animals to survive long periods of high temperatures and scarce water supplies Daily torpor is exhibited by many small mammals and birds and seems adapted to feeding patterns Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

103 Stimulus: Perturbation/stress
Fig. 40-UN1 Homeostasis Response/effector Stimulus: Perturbation/stress Control center Sensor/receptor

104 Fig. 40-UN2

105 You should now be able to:
Distinguish among the following sets of terms: collagenous, elastic, and reticular fibers; regulator and conformer; positive and negative feedback; basal and standard metabolic rates; torpor, hibernation, estivation, and daily torpor Relate structure with function and identify diagrams of the following animal tissues: epithelial, connective tissue (six types), muscle tissue (three types), and nervous tissue Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

106 Compare and contrast the nervous and endocrine systems
Define thermoregulation and explain how endotherms and ectotherms manage their heat budgets Describe how a countercurrent heat exchanger may function to retain heat within an animal body Define bioenergetics and biosynthesis Define metabolic rate and explain how it can be determined for animals Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings


Download ppt "Basic Principles of Animal Form and Function"

Similar presentations


Ads by Google