Presentation is loading. Please wait.

Presentation is loading. Please wait.

Gas Stoichiometry.

Similar presentations


Presentation on theme: "Gas Stoichiometry."— Presentation transcript:

1 Gas Stoichiometry

2 PVm = nRT Molar Volume: Vm = _____ 22.4 L mol the ______ of ______
of any gas at ____. volume 1 mole STP PVm = nRT (1.00 atm) Vm = (1 mol )(0.0821)(273 K) The volume of 1 mole of any gas at STP will be: Vm = _____ 22.4 L mol but… ONLY at STP!!!

3 Gas Stoichiometry At STP
Start with a balanced equation. Convert mass to moles (use molar mass) or volume to moles (use 22.4 L/mol), if necessary. Use mole ratios to calculate moles of unknown. Convert moles to mass (use molar mass) or volume (use 22.4 L/mol), if necessary.

4 Gas Stoich with Molar Volume
What volume of NH3(g) can be produced from reacting completely 11.2 L of N2(g) at STP? 3 H2(g) + N2(g)  2 NH3(g) 1 mol N2 2 mol NH3 22.4 L NH3 11.2 L N2 x x x 22.4 L N2 1 mol N2 1 mol NH3 2 mol NH3 OR 11.2 L N2 x = ____L NH3 22.4 L NH3 1 mol N2

5 Gas Stoich with Molar Volume
Calculate the mass of H2(g) consumed to produce 44.8 L of NH3(g) at STP. 3 H2(g) + N2(g)  2 NH3(g) 1 mol NH3 3 mol H2 2.02 g H2 44.8 L NH3 x x x 22.4 L NH3 2 mol NH3 1 mol H2 = ____g H2 6.06 g H2

6 Now you try this one alone:
What volume of O2 gas is produced when 980 g KClO3 is decomposed at STP? KClO3(s)  KClO(s) + O2(g) 1 mol KClO3 1 mol O2 22.4 L O2 980 g KClO3 x x x 122.55 g KClO3 1 mol KClO3 1 mol O2 = ____L O2 179 L O2 Molar Mass of KClO3 is g/mol

7 Gas Stoichiometry NOT at STP
Start with a balanced equation. Convert to moles (if amount is L, use n = PV/RT). Use mole ratios to calculate moles of unknown. Convert moles to desired measurement (to convert to L use V=nRT). P

8 Gas Stoichiometry NOT at STP
Start with a balanced equation. Convert mass to moles (use molar mass) or volume to moles (use PV = nRT), if necessary. Use mole ratios to calculate moles of unknown. Convert moles to mass (use molar mass) or volume (use PV = nRT), if necessary.

9 KClO3(s)  KClO(s) + O2(g)
NOT at STP PV = nRT use… What volume of O2 gas is produced from 490 g KClO3 at 298 K and 1.06 atm? KClO3(s)  KClO(s) + O2(g) 1 mol KClO3 1 mol O2 490 g KClO3 x x = 4.00 mol O2 122.55 g KClO3 1 mol KClO3 (1.06 atm) V = (4.00 mol )(0.0821)(298 K) = ____L O2 92.3 L O2 Molar Mass of KClO3 is g/mol


Download ppt "Gas Stoichiometry."

Similar presentations


Ads by Google