Presentation is loading. Please wait.

Presentation is loading. Please wait.

Find: αb wave direction breaking αo wave contours αb beach A) 8.9

Similar presentations


Presentation on theme: "Find: αb wave direction breaking αo wave contours αb beach A) 8.9"— Presentation transcript:

1 Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Ho = 20 [ft] Find alpha b, the apporach angle of the wave when the wave breaks. [pause] In this problem we are provided, --- o T = 15 [s] o αo = 30 o o

2 Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Ho = 20 [ft] the deepwater waveheight, H knot, the period of the wave, --- o T = 15 [s] o αo = 30 o o

3 Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Ho = 20 [ft] T, and alpha knot, which is, --- o T = 15 [s] o αo = 30 o o

4 Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Ho = 20 [ft] the deepwater approach angle. [pause] The problem asks to find alpha b, --- o T = 15 [s] o αo = 30 o o

5 Find: αb wave direction breaking αo wave contours αb beach A) 8.9
Ho = 20 [ft] which is the angle between the crestline of the wave and the ocean bottom contours, when the wave breaks. To find alpha b, --- o T = 15 [s] o αo = 30 o o

6 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) = we’ll use the relationship which relates alpha b to alpha knot, L b and L knot. Where L b and L knot --- Lb Lo

7 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) deep water = correspond to the wavelength for the breaking condition and deepwater condition, respectively. [pause] After solving for alpha b, --- wavelength Lb Lo wavelength at the breaking depth

8 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) deep water = we can plug in the value of alpha knot, which is 30 degrees, --- wavelength Lb Lo Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

9 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) deep water = and was provided in the problem statement. [pause] But we still have to find --- wavelength Lb Lo o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

10 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) deep water = L b, and, L knot. [pause] L knot, equals, --- wavelength Lb Lo o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

11 Find: αb = wave direction breaking αo wave contours αb beach sin (αb)
sin (αo) g * T2 = g times T squared, divided by 2 PI. [pause] Variable g represents the --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

12 Find: αb = wave direction breaking αo wave contours αb beach
32.16 [ft/s2] sin (αb) sin (αo) g * T2 = gravitational acceleration constant, and variable T is the wave period, --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

13 Find: αb = wave direction breaking αo wave contours αb beach
32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = which was provided as 15 seconds. [pause] This makes L knot, equal to, --- Lo = Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

14 Find: αb = =1,151.645 [ft] wave direction breaking αo wave contours αb
beach 32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = 1, feet. [pause] Lastly, we need to determine, L b, --- Lo = =1, [ft] Lb Lo 2 * π o 30 Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

15 Find: αb ? = =1,151.645 [ft] wave direction breaking αo wave contours
beach 32.16 [ft/s2] T = 15 [s] sin (αb) sin (αo) g * T2 = the wavelength of the wave, when the wave breaks. [pause] We know we have found L b, when we select a wave depth, d, --- Lo = =1, [ft] Lb Lo 2 * π o 30 ? Lb wavelength at the αb = sin-1 sin(αo) * Lo breaking depth

16 Find: αb ? =1,151.645 [ft] wave direction breaking αo wave contours αb
beach 32.16 [ft/s2] T = 15 [s] d=? g * T2 which results in a wave condition, where the actual height of the wave, H A, --- Lo = =1, [ft] 2 * π wave o 30 ? depth Lb αb = sin-1 sin(αo) * Lo

17 Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave
contours actual wave wave height at height breaking depth Ha = Hb d=? equals the breaking height of the wave, H b. [pause] This is the same comparison, as if we happen to divide --- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

18 Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave
contours actual wave wave height at height breaking depth Ha Hb d=? = both sides of the equation by the wavelength, L. [pause] To begin, we’ll arbitrarily choose a wave depth of --- Lo=1, [ft] L L o wave 30 ? wavelength depth Lb αb = sin-1 sin(αo) * Lo

19 Find: αb ? = Lo=1,151.645 [ft] wave direction breaking αo wave
contours actual wave wave height at height breaking depth Ha Hb d=20 [ft] = 20 feet for our first iteration. [pause] Next, we’ll compute d over L knot, --- Lo=1, [ft] L L o wave 30 ? wavelength depth Lb αb = sin-1 sin(αo) * Lo

20 Find: αb ? = Lo=1,151.645 [ft] wave direction αo αb beach d Lo
d=20 [ft] and after plugging the appropriate variables, d over L knot, --- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

21 Find: αb ? =0.01736 Lo=1,151.645 [ft] wave direction αo αb beach d Lo
d=20 [ft] equals, [pause] This value of d over L knot corresponds to a d over L value of, --- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

22 Find: αb ? =0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
beach d = Lo d=20 [ft] Therefore, the wavelength for this wave, --- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

23 Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
beach d = Lo d=20 [ft] at a depth of 20 feet, equals, -- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

24 Find: αb ? = 0.05353 = 373.622 [ft] =0.01736 Lo=1,151.645 [ft] wave
direction αo d = L αb d L= = [ft] d/L beach d = Lo d=20 [ft] feet. [pause] Also, by knowing the value of d over L knot, --- Lo=1, [ft] o wave 30 ? depth Lb αb = sin-1 sin(αo) * Lo

25 Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
L= [ft] beach d=20 [ft] d = Lo we can interpolate to find the hyperbolic tangent of k d, and, --- Lo=1, [ft] o 30 ? Lb αb = sin-1 sin(αo) * Lo

26 Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
L= [ft] beach d=20 [ft] d = Lo the shoaling coeffcient, H over H knot prime, where the variable H, --- Lo=1, [ft] o tanh (k*d) = 30 ? Lb H/Ho = αb = sin-1 sin(αo) * Lo

27 Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
L= [ft] beach d=20 [ft] d = Lo represents the actual height of the wave, H A, at the tested depth of, --- Lo=1, [ft] o tanh (k*d) = 30 ? Lb H/Ho = αb = sin-1 sin(αo) * Lo

28 Find: αb ? = 0.05353 =0.01736 Lo=1,151.645 [ft] wave direction αo d L
L= [ft] beach d=20 [ft] d = Lo 20 feet, and that variable H, is what we’ll use to compare the actual wave, H a, --- Lo=1, [ft] o tanh (k*d) = 30 ? Lb H/Ho = αb = sin-1 sin(αo) * Lo

29 Find: αb ? = 0.05353 = =0.01736 Lo=1,151.645 [ft] actual wave d height
Ha Hb L= [ft] = L L d=20 [ft] d = Lo with the wave at its breaking condition, H b. [pause] The right hand side of this equation, H b over L, --- Lo=1, [ft] o tanh (k*d) = 30 ? Lb H/Ho = αb = sin-1 sin(αo) * Lo

30 Find: αb = 0.05353 = =0.01736 = 0.142 * tanh (k*d) actual wave d
height L Ha Hb L= [ft] = L L d=20 [ft] d = Hb Lo equals, times the hyperbolic tangent of k d, --- = * tanh (k*d) L tanh (k*d) = H/Ho =

31 Find: αb = 0.05353 = = 0.0460 =0.01736 = 0.142 * tanh (k*d) actual
wave d = height L Ha Hb L= [ft] = L L d=20 [ft] Hb = d L = Hb Lo which equals, [pause] Solving for the actual wave height, H a, --- = * tanh (k*d) L tanh (k*d) = H/Ho =

32 Find: αb = 0.05353 = = 0.0460 =0.01736 = 0.142 * tanh (k*d) actual
wave d = height L Ha Hb L= [ft] = L L d=20 [ft] Hb = d L = Hb Lo we must first compute the approach angle the wave would make, --- = * tanh (k*d) L tanh (k*d) = H/Ho =

33 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] L Lo=1, [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = at a depth of 20 feet. And after plugging in the known variables of, --- H/Ho =

34 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L o 30 d=20 [ft] L Lo=1, [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = L, L knot, and alpha knot, the crestline of the wave would be ---- H/Ho =

35 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L o 30 d=20 [ft] L Lo=1, [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = 9.319 degrees offset from the ocean bottom contours. With the value of alpha, we can compute --- α = 9.319 o H/Ho =

36 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L o 30 d=20 [ft] L Lo=1, [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = the wave refraction index, K r, which equals, --- α = 9.319 o H/Ho = cos (αo) KR = cos (α)

37 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L o 30 d=20 [ft] L Lo=1, [ft] α = sin-1 sin(αo) * Lo tanh (k*d) = [pause] After that, we’ll compute the unrefracted deepwater wave height, --- α = 9.319 o H/Ho = o cos (αo) 30 KR = cos (α) KR =0.9368

38 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = H knot prime, by multipliying the refraction coefficient by the deepwater wave height. We just computed --- unrefracted H/Ho = deepwater α = 9.319 o wave height KR =0.9368

39 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = the refraction coefficient, K r, and the problem statement provided the deepwater --- unrefracted H/Ho = deepwater α = 9.319 o wave height KR =0.9368

40 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = wave height as 20 feet. This makes the unrefracted deepwater wave height, equal to, --- unrefracted H/Ho = deepwater α = 9.319 o wave height KR =0.9368

41 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = feet. [pause] Now, to find the actual height of the wave at this depth, --- Ho = [ft] H/Ho = α = 9.319 o KR =0.9368

42 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = we’ll multiply H knot prime by the shoaling coefficient, and the actual height, equals, --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368

43 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Ho = 20 [ft] Lo=1, [ft] Ho = KR * Ho tanh (k*d) = feet. [pause] When divided by the wavelength, L, --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

44 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] actual wave d height 0.0460 L
Ha Hb L= [ft] = L L d=20 [ft] Ha Lo=1, [ft] L tanh (k*d) = the quotient, H a over L, equals, -- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

45 Find: αb ? = 0.05353 = Lo=1,151.645 [ft] = 0.0634 actual wave d height
0.0460 L Ha Hb L= [ft] = L L d=20 [ft] Ha Lo=1, [ft] = L tanh (k*d) = [pause] Since the actual height of the wave H a, --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

46 Find: αb = 0.05353 > Lo=1,151.645 [ft] = 0.0634 actual wave d
height 0.0460 L Ha Hb L= [ft] > L L d=20 [ft] Ha Lo=1, [ft] = L tanh (k*d) = is greater than the breaking height of the wave, then, this wave does not exist, because, it broke, at a depth, --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

47 Find: αb = 0.05353 > Lo=1,151.645 [ft] = 0.0634 actual wave d
height 0.0460 L Ha Hb L= [ft] > L L d=20 [ft] d < db Ha Lo=1, [ft] = L tanh (k*d) = deeper than 20 feet. [pause] For our second iteration, we’ll use a depth based on --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

48 Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb
L= [ft] > L L d=20 [ft] d < db ( HA,i / Li ) di+1= di Lo=1, [ft] * ( Hb,i / Li ) tanh (k*d) = our previous depth, and variables H a, and, H b. [pause] After plugging in --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

49 Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb
L= [ft] > L L d=20 [ft] ( HA,i / Li ) di+1= di Lo=1, [ft] * ( Hb,i / Li ) tanh (k*d) = the appropriate variables, our next depth to test will be, --- Ho = [ft] H/Ho = α = 9.319 o H = Ho * (H/Ho ) KR =0.9368 H = [ft]

50 Find: αb = 0.05353 > Lo=1,151.645 [ft] d 0.0634 0.0460 L Ha Hb
L= [ft] > L L d=20 [ft] ( HA,i / Li ) d2= d1 Lo=1, [ft] * ( Hb,i / Li ) tanh (k*d) = 27.58 feet. [pause] When using the depth of feet, --- d2= [ft] H/Ho = α = 9.319 o KR =0.9368

51 Find: αb ? = ? = Lo=1,151.645 [ft] d ? ? L Ha Hb L= ? [ft] L L
d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = ? and performing the same calculations as the first iteration, --- H/Ho = ? α = ? o KR =?

52 Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = we compute the values shown here. At this depth, we notice the actual height of the wave, --- H/Ho = α = o KR =0.9391

53 Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = H a, is less than the breaking height of the wave, H b. Therefore, our subsequent depth, --- H/Ho = α = o KR =0.9391

54 Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] d3= d2 * ( Hb,i / Li ) tanh (k*d) = d 3, will be shallower than feet. For our next depth value we’ll try --- H/Ho = α = o KR =0.9391

55 Find: αb = 0.06333 < Lo=1,151.645 [ft] d 0.0508 0.0537 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] d3= d2 * ( Hb,i / Li ) tanh (k*d) = 26.09 feet. [pause] After running through a third iteration, --- d3= [ft] H/Ho = α = o KR =0.9391

56 Find: αb ? = ? = Lo=1,151.645 [ft] d ? ? L Ha Hb L= ? [ft] L L
d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = ? for this new depth value, we again calculate out all the values, ---- H/Ho = ? α = ? o KR =?

57 Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = as shown. [pause] As the actual wave height approaches the breaking wave height, --- H/Ho = α = o KR =0.9387

58 Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = the actual approach angle converges on the approach angle for the breaking wave, alpha b. [pause] The approach angle for the first 3 iterations are, --- H/Ho = α = o KR =0.9387

59 Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = 9.319 degrees, degrees, and degrees. Where degrees --- α1 = 9.319 o H/Ho = α2 = o α = o α3 = o KR =0.9387

60 Find: αb = 0.06150 < Lo=1,151.645 [ft] d 0.05280 0.05338 L Ha Hb
L= [ft] < L L d= [ft] ( HA,i / Li ) Lo=1, [ft] di+1= di * ( Hb,i / Li ) tanh (k*d) = is the most accurate approximation for alpha b, because this value in our algorithm converges to alpha b. [pause] α1 = 9.319 o H/Ho = α2 = o α = o α3 = o KR =0.9387

61 Find: αb = 0.06150 Lo=1,151.645 [ft] d A) 8.9 B) 10.5 L C) 12.1
L= [ft] o d= [ft] Lo=1, [ft] tanh (k*d) = When reviewing the possible solutions, --- α1 = 9.319 o H/Ho = α2 = o α = o α3 = o KR =0.9387

62 Find: αb = 0.06150 Lo=1,151.645 [ft] d A) 8.9 B) 10.5 L C) 12.1
L= [ft] o d= [ft] Lo=1, [ft] answerB tanh (k*d) = the answer is B. [fin] α1 = 9.319 o H/Ho = α2 = o α = o α3 = o KR =0.9387


Download ppt "Find: αb wave direction breaking αo wave contours αb beach A) 8.9"

Similar presentations


Ads by Google