Presentation is loading. Please wait.

Presentation is loading. Please wait.

Charmonium spectroscopy above thresholds

Similar presentations


Presentation on theme: "Charmonium spectroscopy above thresholds"— Presentation transcript:

1 Charmonium spectroscopy above thresholds
11th International Workshop on Meson Production, Properties and Interaction KRAKÓW, POLAND June 2010 A. Valcarce University of Salamanca (Spain) T. Fernández-Caramés (U. Salamanca), J. Vijande (U. Valencia) 25 February, 2019 Charmonium spectroscopy ...

2 Motivation: New charmonium (open charm) mesons
DD 3872 cc mass spectrum Below the DD threshold charmonium spectroscopy is a good example of the simple color Fermi-Breit structure of the heavy hadron spectra. Above this threshold new experimental data indicate a more complicated situation. X (3872), X (3940),Y (3940), Z (3940), Y(4140),... Charmonium Open charm DsJ*(2317), DsJ(2460), D0*(2308),DsJ(2632), DsJ*(2700), ... R.L. Jaffe, Phys. Rev. D15, 267 (1977) =0 ccnn 25 February, 2019 Charmonium spectroscopy ...

3 Could these new mesons be deeply bound four quark states?
X(3872) X,Y,Z(3940) Y(4260) Z+(4430) DD|S(0++) DD*|S(1++) DsDs|S(0++) DD1|S D*D1|S Could these new mesons be deeply bound four quark states? If not, could they be meson-meson molecular states? Charmonium 25 February, 2019 Charmonium spectroscopy ...

4 Charmonium spectroscopy ...
MULTIQUARK states , although stationary in a potential or bag, do not in general correspond to stable hadrons or even resonances. Far from it, most, perharps even all, fall apart into valence mesons and baryons without leaving more than a ripple on the meson-meson or meson-baryon scattering amplitude. If the multiquark state is unsually light or sequestered from the scattering channel, it may be prominent. If not, it is just a silly way of enumerating the states of the continuum. c n ccnn cncn D J/ w + cncn ccnn 25 February, 2019 Charmonium spectroscopy ...

5 Solving the Schrödinger equation: HH or VM
1 2 3 1 2 3 4 1,2  c 3,4  n ccnn 1 2 3 1 2 3 4 1,2  c 3,4  n cncn C-parity is a good symmetry. Pauli principle must be imposed. 25 February, 2019 Charmonium spectroscopy ...

6 Interacting potentials
Parameters determined on meson spectroscopy BCN Confinement: Linear potential One-gluon exchange: Standard Fermi-Breit potential Confinement: Linear screened potential One-gluon exchange: Standard Fermi-Breit potential Scale dependent as Boson exchanges: Chiral symmetry breaking Not active for heavy quarks CQC Parameters determined on the NN interaction and meson/baryon spectroscopy 25 February, 2019 Charmonium spectroscopy ...

7 cncn. CQC model 4q Energy Theoretical threshold
3800 3900 4000 4100 4200 4300 4400 4500 4600 4q Energy Theoretical threshold ) V e M ( J. Vijande et al., Phys. Rev. D79, (2009) E + 1 + 2 + - 1 - 2 - + 1 + 2 + - 1 - 2 - ( 2 8 ) ( 2 4 ) ( 3 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 8 ) ( 2 4 ) ( 3 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) I = I = 1 25 February, 2019 Charmonium spectroscopy ...

8 No deeply bound (compact) states in the ccnn sector.
cncn (I=0). BCN model 4q Energy Theoretical threshold No deeply bound (compact) states in the ccnn sector. J. Vijande et al., Phys. Rev. D76, (2007) What about molecular states? 25 February, 2019 Charmonium spectroscopy ...

9 Molecular vs. compact states
← Molecular state (ΔE 0, ΔR finite ~1–2, a domi- nant single physical channel) ← Unbound state (ΔE >0, ΔR → ∞, a single physical channel) ← Compact state (ΔE <0, ΔR <1, several diffe- rent physical channels) 25 February, 2019 Charmonium spectroscopy ...

10 Charmonium spectroscopy ...
x z y 1 2 3 4 1,2  c 3,4  n ccnn 25 February, 2019 Charmonium spectroscopy ...

11 Solving the Lippmann-Schwinger equation for the two meson system
(II) 25 February, 2019 Charmonium spectroscopy ...

12 Charmonium spectroscopy ...
Coupled channels [(cn)(nc)] JPC (I) (S,L) [(c c) (nn)] DD 0+ + (0) (0,0) c -  DD* 1+ (+) (0) (1,0),(1,2) J/ -  1+ (–) (1) J/ -  D*D* (0,0),(2,2) 1+ – (0) c -  1– – (0) (0,1),(2,3) J/ - 1– + (0) (1,1),(1,3) 2+ + (0) (2,0),(2,2) 2– – (0) (1,1),(2,1),(1,3),(2,3) 0– + (1) 1+ – (1) J/ -  2+ + (1) (I) (II) 25 February, 2019 Charmonium spectroscopy ...

13 where for practical purposes we have used the convention
25 February, 2019 Charmonium spectroscopy ...

14 Interacting potentials
Parameters determined on meson spectroscopy BCN Confinement: Linear potential One-gluon exchange: Standard Fermi-Breit potential Confinement: Linear screened potential One-gluon exchange: Standard Fermi-Breit potential Scale dependent as Boson exchanges: Chiral symmetry breaking Not active for heavy quarks CQC Parameters determined on the NN interaction and meson/baryon spectroscopy 25 February, 2019 Charmonium spectroscopy ...

15 Heavy baryons Non-strange two- Strange two- baryon systems
A. Valcarce et al., Eur. Phy. J. A37, 217 (2008) Heavy baryons Non-strange two- baryon systems A. Valcarce et al., Rep. Prog. Phys. 68, 965 (2005) H. Garcilazo et al., Phys. Rev. C76, (2007) Strange two- baryon systems 25 February, 2019 Charmonium spectroscopy ...

16 No charge partners of the X(3872) [diquark-antidiquark]
DD* DD* – J/  JPC(I)=1++(0) T. Fernández-Caramés et al., Phys. Rev. Lett. 103, (2009) X(3872) No charge partners of the X(3872) [diquark-antidiquark] JP=1+ and I=1, coupled to J/   Repulsive 25 February, 2019 Charmonium spectroscopy ...

17 Charmonium spectroscopy ...
D D – c  D* D* – J/   25 February, 2019 Charmonium spectroscopy ...

18 ! ! System JPC(I) DD 0++(0) DD* 1++(0) D*D* 2++(0) 2++(1)
Attractive channels for the two D(Ds)-meson systems ! R.Mizuk et al., Phys. Rev. D78, (2008) PRL67, 556 (1991) N.A. Törnqvist. PV and VV two-meson systems are the most natural candidates to be bound, in spite of the different working framework. Y(3940)  T. Branz et al. PRD 80, (2009). D*D* JPC(I)=0++ (0)[2++(0)]. Effective lagrangians. [Y(3940) J/ ]> 1 MeV. Y(4140)  T. Branz et al. PRD 80, (2009). D*sD*s JPC(I)=0++ (0)[2++(0)]. Effective lagrangians. [Y(4140) J/ ]> 1 MeV. R.M. Albuquerque et al. PLB 678, 186 (2009). D*sD*s JPC(I)=0++ (0). QCD sum rules. G.-J. Ding. EPJC 64, 297 (2009). D*sD*s JPC(I)=0++ (0). One-boson exchange model. Y(3940), Z(3940), X(4160)  R. Molina et al. PRD 80, (2009). D*D* D*sD*s JPC(I)=0++ (0), 2++(0). Dynamically generated resonances. 25 February, 2019 Charmonium spectroscopy ...

19 Charmonium spectroscopy ...
Summary Hidden flavor components (unquenching the quark model) offer a possible explanation of the new experimental data in heavy meson spectroscopy. Deeply-bound (compact) four-quark states with non-exotic quantum numbers are hard to justify [while “many-body (medium)” effects do not enter the game]. Slightly bound (meson-meson molecules) four-quark states seem to be present in the heavy meson spectra. PV: 1++ (0) are the candidate quantum numbers to lodge meson-meson molecules for systems made of non-identical mesons [X(3872)]. PP: 0++ (0) would the only candidate to lodge a broad meson-meson molecule for systems made of identical pseudoscalar mesons. VV: 0++ (0) and 2++ (0,1) should show meson-meson molecules for systems made of identical vector mesons [Y(3940),Y(4140)]. 25 February, 2019 Charmonium spectroscopy ...


Download ppt "Charmonium spectroscopy above thresholds"

Similar presentations


Ads by Google