Download presentation
Presentation is loading. Please wait.
1
topic11_shocktube_problem
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering 2/25/2019 topic11_shocktube_problem
2
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR MacCormack’s method (6.3) Original (1969) method is 2nd order accurate (in space and time) explicit method. It is a modified form of the Lax-Wendroff scheme. Using MacCormack’s method we write Predictor step 2/25/2019 topic11_shocktube_problem
3
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Insert Figure 6.2 2/25/2019 topic11_shocktube_problem
4
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Predicted value, first order accurate Similar equations can be written for the predicted values of the Other variables in the U_bar vector. Note that the forward difference is used in Eq. (6.17) for the space derivative 2/25/2019 topic11_shocktube_problem
5
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Corrector step First obtain a predicted value of the time derivative using backward difference for the space derivatives Now find average value of the time derivative as 2/25/2019 topic11_shocktube_problem
6
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Now use Eq. (6.13) to calculate the variable at (n+1) Repeat the procedure to get the variable at all the grid points shown In Figure 6.2 The same procedure can be used for all the other variables of the solution vector U_bar, using forward difference for the predictor step and backward difference for the corrector step. Because of using forward difference for the predictor and backward differnce for the corrector step, the method can be shown to be 2nd order accurate. 2/25/2019 topic11_shocktube_problem
7
The Shock Tube Process (11.4.2)
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The Shock Tube Process (11.4.2) Insert Figure 11.5 2/25/2019 topic11_shocktube_problem
8
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Consists of a high pressure chamber and a low pressure chamber separated by a diaphragm When the diaphragm is broken a wave pattern is established as shown In the figure Figure shows the flow at a certain time t1, when the waves haven’t Started reflecting from the tube ends Insert Figure 11.6 2/25/2019 topic11_shocktube_problem
9
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
10
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall the following vector form of the equations 2/25/2019 topic11_shocktube_problem
11
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
12
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
13
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
14
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The above vectors can be modified for the shock tube problem. Since only one space dimension is present, the vectors can be shortened as follows 2/25/2019 topic11_shocktube_problem
15
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
16
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
17
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
18
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall that, according to Stokes hypothesis Also recall that Therefore Also recall 2/25/2019 topic11_shocktube_problem
19
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR If we neglect external heating, the J-vector on the RHS will be = 0. Therefore we can write 2/25/2019 topic11_shocktube_problem
20
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Auxiliary relations for a perfect gas 2/25/2019 topic11_shocktube_problem
21
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Calculate from 2/25/2019 topic11_shocktube_problem
22
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
23
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
24
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
25
topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.