Presentation is loading. Please wait.

Presentation is loading. Please wait.

topic11_shocktube_problem

Similar presentations


Presentation on theme: "topic11_shocktube_problem"— Presentation transcript:

1 topic11_shocktube_problem
AE/ME 339 Computational Fluid Dynamics (CFD) K. M. Isaac Professor of Aerospace Engineering 2/25/2019 topic11_shocktube_problem

2 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR MacCormack’s method (6.3) Original (1969) method is 2nd order accurate (in space and time) explicit method. It is a modified form of the Lax-Wendroff scheme. Using MacCormack’s method we write Predictor step 2/25/2019 topic11_shocktube_problem

3 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Insert Figure 6.2 2/25/2019 topic11_shocktube_problem

4 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Predicted value, first order accurate Similar equations can be written for the predicted values of the Other variables in the U_bar vector. Note that the forward difference is used in Eq. (6.17) for the space derivative 2/25/2019 topic11_shocktube_problem

5 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Corrector step First obtain a predicted value of the time derivative using backward difference for the space derivatives Now find average value of the time derivative as 2/25/2019 topic11_shocktube_problem

6 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Now use Eq. (6.13) to calculate the variable at (n+1) Repeat the procedure to get the variable at all the grid points shown In Figure 6.2 The same procedure can be used for all the other variables of the solution vector U_bar, using forward difference for the predictor step and backward difference for the corrector step. Because of using forward difference for the predictor and backward differnce for the corrector step, the method can be shown to be 2nd order accurate. 2/25/2019 topic11_shocktube_problem

7 The Shock Tube Process (11.4.2)
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The Shock Tube Process (11.4.2) Insert Figure 11.5 2/25/2019 topic11_shocktube_problem

8 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Consists of a high pressure chamber and a low pressure chamber separated by a diaphragm When the diaphragm is broken a wave pattern is established as shown In the figure Figure shows the flow at a certain time t1, when the waves haven’t Started reflecting from the tube ends Insert Figure 11.6 2/25/2019 topic11_shocktube_problem

9 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

10 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall the following vector form of the equations 2/25/2019 topic11_shocktube_problem

11 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

12 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

13 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

14 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR The above vectors can be modified for the shock tube problem. Since only one space dimension is present, the vectors can be shortened as follows 2/25/2019 topic11_shocktube_problem

15 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

16 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

17 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

18 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Recall that, according to Stokes hypothesis Also recall that Therefore Also recall 2/25/2019 topic11_shocktube_problem

19 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR If we neglect external heating, the J-vector on the RHS will be = 0. Therefore we can write 2/25/2019 topic11_shocktube_problem

20 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Auxiliary relations for a perfect gas 2/25/2019 topic11_shocktube_problem

21 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR Calculate from 2/25/2019 topic11_shocktube_problem

22 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

23 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

24 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem

25 topic11_shocktube_problem
Computational Fluid Dynamics (AE/ME 339) K. M. Isaac MAEEM Dept., UMR 2/25/2019 topic11_shocktube_problem


Download ppt "topic11_shocktube_problem"

Similar presentations


Ads by Google