Download presentation
Presentation is loading. Please wait.
1
Concurrent Separation Logic
2
How to prove the correctness of concurrent programs
One philosophy (due to Tony Hoare): Disallow the smart (but error-prone) programs; Concurrent programming should follow some idioms or disciplines. Most of the time each process uses its own private data. In the rare cases that they need to communicate, access the shared data exclusively in critical regions. await (B) do C with r when B do C Mutex or locks (which we will use here)
3
The language x := e | [e] := e' | x := [e] | cons(e)
| dispose(e) | C; C | C || C | … A new construct: l.acq() | l.rel()
4
Operational Semantics
Program state: (s, h, L) where L locks {0, 1} L(l) = 1 (l.acq(), (s, h, L)) (skip, (s, h, L{l 0}) ) (l.rel(), (s, h, L)) (skip, (s, h, L{l 1}) )
5
How to control interference?
Basic idea: Each thread has private memory (resource) The private resource can be arbitrarily used Private resources of different threads are disjoint Shared resources are protected by locks Shared resources are disjoint with local resources Can only be used when the lock is acquired (i.e. in critical regions) Different locks protect different resources
6
Basic Memory Model Shared (accessible only in critical regions)
Private Private
7
Basic Memory Model
8
Basic Memory Model
9
Basic Memory Model
10
Basic Memory Model When the resource is acquired/released, it must be well-formed. The well-formedness is resource invariant.
11
Concurrent Separation Logic (CSL)
Lock-based critical regions (CR): l.acq(); … l.rel() Invariants about memory protected by locks: = {l1 r1, …, ln rn} r1, …, rn disjoint l1 ln r1 rn
12
CSL – Formalization Key ideas:
Threads can only access disjoint resources at the same time. p q p q Transfer is logical: no memory copying ┝ {p1} C1 {q1} ┝ {p2} C2 {q2} ┝ {p1 p2} C1 || C2 {q1 q2}
13
CSL – Parallel Composition
ln p q p q r1 rn ┝ {p1} C1 {q1} ┝ {p2} C2 {q2} ┝ {p1 p2} C1 || C2 {q1 q2} Transfer is logical: no memory copying I() p1 p2 I() q1 q2 We’ll define I() later.
14
CSL - Locks Lock acquire: Lock release: ┝ {p} l.acq() {p (l)}
Note: do not support reentrant locks Lock release: ┝ {p (l)} l.rel() {p} Compare the rules with cons and dispose
15
Examples (l) = full c _, _ full emp Put (x): l.acq();
while( full ){ l.rel(); } c := x; full := true; Get (y): l.acq(); while( !full ){ l.rel(); } y := c; full := false; (l) = full c _, _ full emp
16
Examples (l) = full c _, _ full emp Put (x): l.acq();
while( full ){ l.rel(); } (l) = full c _, _ full emp {x _, _ } {x _, _ (l) full } {x _, _ } c := x; full := true; l.rel(); {x _, _ (l) } {c _, _ } {x _, _ } {full c _, _ } {x _, _ (l) } {(l) } {emp } {x _, _ (l) full }
17
Examples (l) = full c _, _ full emp get (y): l.acq();
while( !full ){ l.rel(); } (l) = full c _, _ full emp {emp} { (l) full } {c _, _ } y := c; full := false; l.rel(); { (l) } {y _, _ } { emp } {y _, _ (full emp) } {(l) } {y _, _ (l)} {y _, _ } {(l) full }
18
Examples {x _, _ } put (x) {emp } {emp} get (y) {y _, _ } {emp}
x := cons(a, b); put(x); get(y); use(y); dispose(y); {x _, _ } {y _, _ } {y _, _ } {emp } {emp} {emp emp}
19
Examples (2) (l) = list(f) alloc (x, a, b): l.acq(); if( f == null ){
l.rel(); x := cons (a, b); } else { x := f; f := [x+1]; [x] := a; [x+1] := b; } free (y): l.acq(); [y+1] := f; f := y; l.rel(); (l) = list(f)
20
Examples (2)
21
Implementation of P/V (locks)
22
Requirement on Resource Invariant
┝ {p1} C1 {q1} ┝ {p2} C2 {q2} ┝ {p1 p2} C1 || C2 {q1 q2} l1 ln r1 rn Transfer is logical: no memory copying Resource invariants need to be precise, i.e. l dom(). precise( (l) )
23
Requirement on Resource Invariant
one 10 _ (l) = true ┝ {true} skip {true} ┝ {(emp one) true} skip {emp true} ┝ {(emp one)} l.acq; skip; l.rel(); {emp} C l.acq; skip; l.rel(); ┝ {(emp one)} C {emp} ┝ {(emp one)} C {emp} ┝ {emp} C {emp} ┝ {one} C {emp} ┝ {emp one} C {emp one} ┝ {one} C {one}
24
Requirement on Resource Invariant
(l) = true ┝ {one} C {one} ┝ {one} C {emp} ┝ {one} C {one emp} ┝ {one} C {false} The problem: (l) is not precise. Recall that p r q r (p q ) r does not hold unless r is precise.
25
Soundness l1 ln I(, L, l) = L(l) = 0 emp L(l) = 0 (l) r1
rn I(, L) = ldom() . I(, L, l) We define Safek(, (s, h, L), C, q) inductively.
26
Soundness Safe0(, (s, h, L), C, q) always holds
Safek+1(, (s, h, L), C, q) holds if there exist hs and hp such that (1) h = hs |+| hp; (2) (s, hs) |= I(, L) (3) for all s’, hs’, L’, and h’, if (s’, hs’) |= I(, L’), and h = hs’ |+| hp, then Safek(, (s’, h’, L’), C, q) (4) if C = skip, then (s, hp) |= q true (5) for all s’, h’, L’, if (C, (s, h, L)) (C’, (s’, h’, L’)), then Safek(, (s’, h’, L’), C’, q)
27
Soundness l1 ln I(, L, l) = L(l) = 0 emp L(l) = 0 (l) r1
rn I(, L) = ldom() . I(, L, l) We define Safek(, (s, h, L), C, q) inductively. Safe(, (s, h, L), C, q) iff k. Safek(, (s, h, L), C, q) [ ┝ { p } C { q } ] s, h, L. if (s, h) |= I(, L) p true, then Safe(, (s, h, L), C, q)
28
Reading Peter W. O'Hearn: Resources, Concurrency and Local Reasoning. CONCUR 2004: 49-67 Peter W. O'Hearn: Resources, concurrency, and local reasoning. Theor. Comput. Sci. 375(1-3): (2007) Viktor Vafeiadis. Concurrent separation logic and operational semantics. In MFPS ENTCS 276, pp Elsevier (Sep. 2011)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.