Download presentation
Presentation is loading. Please wait.
1
Static Equilibrium Problem
50Λ A B C D E F G
2
DISCLAIMER & USAGE The content of this presentation is for informational purposes only and is intended for students attending Louisiana Tech University only. The authors of this information do not make any claims as to the validity or accuracy of the information or methods presented. Any procedures demonstrated here are potentially dangerous and could result in damage and injury. Louisiana Tech University, its officers, employees, agents and volunteers, are not liable or responsible for any injuries, illness, damage or losses which may result from your using the materials or ideas, or from your performing the experiments or procedures depicted in this presentation. The Living with the Lab logos should remain attached to each slide, and the work should be attributed to Louisiana Tech University. If you do not agree, then please do not view this content. boosting application-focused learning through student ownership of learning platforms
3
Class Problem: Three cylinders, each weighing 8N, are stacked in a box as shown. Determine:
The force exerted by cylinder B onto cylinder A. The forces exerted onto cylinder B by the vertical and horizontal surfaces at D and E. Since part a is asking for B onto A, we need to draw the FBD that shows B exerting a force on A 50Λ A B C D E F G x y πΉ π₯ = πΉ π΅ β πππ 50Β° β πΉ πΆ βcosβ‘(50Β°)=0 A 8N πΉ π¦ = πΉ π΅ βsinβ‘(50Β°)+ πΉ πΆ βsinβ‘(50Β°)β8π=0 2x2 system of equations πΉ π΅ 50Λ 50Λ πΉ πΆ πΉ π΅ =5.22π πΉ πΆ =5.22π x y πΉ π΄ =5.22π Can you make a conclusion about the force of A on B based on what you determined the force of B is on A? They are the same FB = FA 50Λ B 8N πΉ π₯ =β5.22πβ πππ 50Β° + πΉ π· =0 πΉ π· =3.36π πΉ π· πΉ π¦ =β5.22πβ π ππ 50Β° + πΉ πΈ β8π=0 πΉ πΈ =12.0π πΉ πΈ
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.