Download presentation
Presentation is loading. Please wait.
Published byErlin Pranoto Modified over 6 years ago
1
Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de Raedt and Kristel Michielsen Univ. of Tokyo and Groningen Univ.
2
Nonadiabatic Transition
Quantum Dynamics in Discrete Energy Levels Landau-Zener-Stueckelberg Mechanism C. Zener, Proc. R. Soc. (London) Ser. A137 (1932) 696. Adiabatic change, i.e. Resonant Tunneling Change in Sweeping Field SM, JPSJ 64(1995) 3207, 65(1996) 2734. H. De Raedt et al, PRB56 (1997) 2734
3
Control of Quantum State Adiabatic Transition
Smooth Change of Magnetization I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. K. Saito & SM. JPSJ (2001) 3385.
4
DM interaction Extra-degeneracy + Dzyloshinskii-Moriya interaction
S: odd (S=1/2) V15 Kramers doublet No tunneling? Extra-degeneracy + Dzyloshinskii-Moriya interaction SM, &. N. Nagaosa, . Theor. Phys. 106 (2001) 533
5
Energy structure with DM
|3/2,3/2> |3/2,-1/2> |1/2,a> |1/2,b> No adiabatic change at H=0
6
Directionally Independent Energy Gap due to Hyperfine interaction
SM, H.de Raedt and K. Michielsen: Prog. Thor. Phys (2003) No.11
7
Change of state
8
Triangle system
9
M(t) from the ground state
Apparent LZS relation
10
Finite temperature
11
M(t) under a sweeping field
12
Finite temperature
13
Apparent LZS transition
14
Effects of doubly degenerate structure
Transition from 1/ /2
15
Hysteresis in field sweep
16
Hidden Conservation Law?
Equilibrium process Adiabatic change SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533
17
Coherence at the crossing
18
Resonance on the AC field Non-trivial Resonance
Y. Kayamuma, PRB 47 (1993) 9940 SM, K. Saito, H. De Daedt, Phys. Rev. Lett. 80 (1998) 1525.
19
Nontrivial resonance
20
Decoherence
21
Dissipation Effect Thernal Bath:Quantum Master equation
I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. Random Noise: Quantum Schroedinger equation
22
Quantum Master Equation
H0 HB HI e.g. Photon dissipation and pumping : (SM., H. Ezaki, and E. Hanamura PRA 57 (1998) 2046) Lindblad form Stochastic Schrodinger Equation (antibunching, squeezing photo emission)
23
General formulation Independent phonon bath
K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) 2397 No feedback effects
24
Field sweeping with thermal bath
Fast sweeping Slow sweeping Magnetic FoehnEffect LZS K. Saito & SM. JPSJ (2001) 3385.
25
Effects of environments
26
Phonon-bottleneck effect (MFE) Electron spin system + DM Hx sweeping
No noise Symmetric Noise Nonsymmetric Noise
27
Effects on the Phonon-bottleneck effect (Magnetic Foehn effect) Hz:sweep
28
45-degree
29
Reaction to the nuclear spin
30
Temperature effect
31
Fe ring Fe3+ plays a role of a localized spin with S=5/2 and L=0. Fe10
n= n=10 n= n=12 Fe10 [NaFe6(OCH3)12 (dmb)6] : monoclinic 単斜晶系 a \ne b \ne c, alpha=gamma=90degree \ne beta [NaFe6(OCH3)12 (pmdbm)6]+ : trigonal 菱面体晶系 a=b=c, alpha=beta=gamma \le 120degree or \ne 90degree Fe : monoclinic Fe : monoclinic Fe : trigonal
32
2 1 Fe10 10 3 4 9 +Reflection 5 8 Mirror symmetry 6 7
33
A set of D vectors from static regular structure
<yM|HDM|yM+1>=0 The DM interaction of the above D vectors is not the origin of the peaks in dM/dH.
34
Anisotropy of g-tensor
Hg-tensor=SiSab mBgabiSibHa <yM|Hg-tensor|yM+1>=0 Anisotropy of single ion Hsingle-ion=SiSab DabiSibSia <yM|Hsingle-ion|yM+1>=0 Inversion symmetry should be broken.
35
Oscillation of methyl groups
Structure is measured at Tst=226 K. Each ellipsoid shows 50% possibility. Oblong thermal ellipsoids with the longer radius a Elastic constant of an elastic energy of a methyl group is briefly estimated as K ~ kBTst/a2. H. Nakano and SM: JPSJ 71 (2002) 2580
36
Thank you for your attention
37
Quantum Control of state: Non AdiabaticTransitions
Non-monotonic magnetization process SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533
38
Quantum Switching Memory: 2-values+Metastability Quantum : Dynamics
Classical:Hysteresis Dissipation Nondiabatic change Memory Switch Adiabatic change No Hysteresis loss
39
1. Gap control Transverse field Nontrivial control
Quantum interference Berry phase W.Wernsdorfer & R. Sessoli: Science 284 (1999) 133
40
2. Sweeping velocity control
Switching between different S values
41
3.Rotation of the field (or sample)
Rosen-Zener process
42
Effect of dissipation
43
Noise of uniform field does not contribute to the transition between
Fluctuation of uniform field does not contribute to the transition between S=0 and S=1
44
Singlet-triplet transition
Light emission Spin flip No emission
45
4. Anisotropy control Spin control in semiconductors by voltage
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.