Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de.

Similar presentations


Presentation on theme: "Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de."— Presentation transcript:

1 Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de Raedt and Kristel Michielsen Univ. of Tokyo and Groningen Univ.

2 Nonadiabatic Transition
Quantum Dynamics in Discrete Energy Levels Landau-Zener-Stueckelberg Mechanism C. Zener, Proc. R. Soc. (London) Ser. A137 (1932) 696. Adiabatic change, i.e. Resonant Tunneling Change in Sweeping Field SM, JPSJ 64(1995) 3207, 65(1996) 2734. H. De Raedt et al, PRB56 (1997) 2734

3 Control of Quantum State Adiabatic Transition
Smooth Change of Magnetization I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. K. Saito & SM. JPSJ (2001) 3385.

4 DM interaction Extra-degeneracy + Dzyloshinskii-Moriya interaction
S: odd (S=1/2) V15 Kramers doublet No tunneling? Extra-degeneracy + Dzyloshinskii-Moriya interaction SM, &. N. Nagaosa, . Theor. Phys. 106 (2001) 533

5 Energy structure with DM
|3/2,3/2> |3/2,-1/2> |1/2,a> |1/2,b> No adiabatic change at H=0

6 Directionally Independent Energy Gap due to Hyperfine interaction
SM, H.de Raedt and K. Michielsen: Prog. Thor. Phys (2003) No.11

7 Change of state

8 Triangle system

9 M(t) from the ground state
Apparent LZS relation

10 Finite temperature

11 M(t) under a sweeping field

12 Finite temperature

13 Apparent LZS transition

14 Effects of doubly degenerate structure
Transition from 1/ /2

15 Hysteresis in field sweep

16 Hidden Conservation Law?
Equilibrium process Adiabatic change SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533

17 Coherence at the crossing

18 Resonance on the AC field Non-trivial Resonance
Y. Kayamuma, PRB 47 (1993) 9940 SM, K. Saito, H. De Daedt, Phys. Rev. Lett. 80 (1998) 1525.

19 Nontrivial resonance

20 Decoherence

21 Dissipation Effect Thernal Bath:Quantum Master equation
I. Chiorescu, W. Wernsdorfer, A. Mueller, H. Boegge, B. Barbara, Phys. Rev. Lett. 84 (2000) 3454. Random Noise: Quantum Schroedinger equation

22 Quantum Master Equation
H0 HB HI e.g. Photon dissipation and pumping : (SM., H. Ezaki, and E. Hanamura PRA 57 (1998) 2046) Lindblad form  Stochastic Schrodinger Equation  (antibunching, squeezing photo emission)

23 General formulation Independent phonon bath
K. Saito, S. Takesue and SM. Phys. Rev. B61 (2000) 2397 No feedback effects

24 Field sweeping with thermal bath
Fast sweeping Slow sweeping Magnetic FoehnEffect LZS K. Saito & SM. JPSJ (2001) 3385.

25 Effects of environments

26 Phonon-bottleneck effect (MFE) Electron spin system + DM Hx sweeping
No noise Symmetric Noise Nonsymmetric Noise

27 Effects on the Phonon-bottleneck effect (Magnetic Foehn effect) Hz:sweep

28 45-degree

29 Reaction to the nuclear spin

30 Temperature effect

31 Fe ring Fe3+ plays a role of a localized spin with S=5/2 and L=0. Fe10
n= n=10 n= n=12 Fe10 [NaFe6(OCH3)12 (dmb)6] : monoclinic 単斜晶系 a \ne b \ne c, alpha=gamma=90degree \ne beta [NaFe6(OCH3)12 (pmdbm)6]+ : trigonal  菱面体晶系 a=b=c, alpha=beta=gamma \le 120degree or \ne 90degree Fe : monoclinic Fe : monoclinic Fe : trigonal

32 2 1 Fe10 10 3 4 9 +Reflection 5 8 Mirror symmetry 6 7

33 A set of D vectors from static regular structure
<yM|HDM|yM+1>=0 The DM interaction of the above D vectors is not the origin of the peaks in dM/dH.

34 Anisotropy of g-tensor
Hg-tensor=SiSab mBgabiSibHa <yM|Hg-tensor|yM+1>=0 Anisotropy of single ion Hsingle-ion=SiSab DabiSibSia <yM|Hsingle-ion|yM+1>=0 Inversion symmetry should be broken.

35 Oscillation of methyl groups
Structure is measured at Tst=226 K. Each ellipsoid shows 50% possibility. Oblong thermal ellipsoids with the longer radius a Elastic constant of an elastic energy of a methyl group is briefly estimated as K ~ kBTst/a2. H. Nakano and SM: JPSJ 71 (2002) 2580

36 Thank you for your attention

37 Quantum Control of state: Non AdiabaticTransitions
Non-monotonic magnetization process SM, &. N. Nagaosa, Prog. Theor. Phys. 106 (2001) 533

38 Quantum Switching Memory: 2-values+Metastability Quantum : Dynamics
Classical:Hysteresis  Dissipation Nondiabatic change Memory Switch Adiabatic change No Hysteresis loss

39 1. Gap control Transverse field Nontrivial control
Quantum interference Berry phase W.Wernsdorfer & R. Sessoli: Science 284 (1999) 133

40 2. Sweeping velocity control
Switching between different S values

41 3.Rotation of the field (or sample)
Rosen-Zener process

42 Effect of dissipation

43 Noise of uniform field does not contribute to the transition between
Fluctuation of uniform field does not contribute to the transition between S=0 and S=1

44 Singlet-triplet transition
Light emission Spin flip No emission

45 4. Anisotropy control Spin control in semiconductors by voltage


Download ppt "Quantum tunneling by Hyperfine interaction Origin of adiabatic change of the magnetization and the symmetry of the molecules Seiji Miyashita, Hans de."

Similar presentations


Ads by Google