Download presentation
Presentation is loading. Please wait.
1
Predicting Indirect DNA Damage by Simulating Metabolic Activation of Chemicals
Ovanes Mekenyan, Milen Todorov, Ksenia Gerova Laboratory of Mathematical Chemistry, Bulgaria 2nd McKim Workshop on Reducing Data Redundancy in Cancer Assessment Baltimore, 8-10 May 2012
2
Outlook Goal Methods Data Predicting: Conclusions
AMES mutagenicity without metabolic activation AMES metabolic activation chemicals negative as parents Illustrating metabolic activation False positives after metabolic activation False negatives after metabolic activation Conclusions
3
Outlook Goal Methods Data Predicting: Conclusions
AMES mutagenicity without metabolic activation AMES metabolic activation chemicals negative as parents Illustrating metabolic activation False positives after metabolic activation False negatives after metabolic activation Conclusions
4
Goal Predicting indirect DNA damage in the General Workflow Diagram for screening large chemicals inventories for carcinogenicity
5
General Flow Diagram for Screening Large Inventories for carcinogenicity
Inventory Classify as Genotoxic Bacterial Mutagen High Carcinogenicity Potential? High Priority for Tumor Promotion Assays No-Threshold Risk Assessment Y Direct DNA Reactive Chemicals Ames Positive w/o S9 Y Y N Generate metabolites DNA reactive Metabolites Y Y Ames Positive with S9 Protein Reactive Chemicals Intermediate Priority for Tumor Promotion Assays Threshold Effect Risk Assessment CTA Assays for Nongenotoxic/ Epigenetic Chemicals Receptor-Based Screening Low Carcinogenit Potential
6
General Flow Diagram for Screening Large Inventories for carcinogenicity
Inventory Protein OASIS Y Chrom Ab ? MicroNucl ? N Direct DNA reactive Ames Positive w/o S9 Y Bacterial Mutagen In vivo Mammal Tests Y N Generate metabolites Y Indirect DNA reactive Y Ames Positive with S9 Refine TIMES/ Structural alerts Chrom Ab ? MicroNucl ? N Return for further screening Protein Reactive Oxidative stress? Receptor-Based Epigenetic Screen Low Carcinogenit Potential
7
Outlook Goal Methods Data Predicting: Conclusions
AMES mutagenicity without metabolic activation AMES metabolic activation chemicals negative as parents Illustrating metabolic activation False positives after metabolic activation False negatives after metabolic activation Conclusions
8
Methods: DNA binding profile by OASIS DNA binding profile by OECD
QSAR Toolbox profiles for DNA binding DNA binding profile by OASIS DNA binding profile by OECD
9
Illustration of the DNA binding profile of the QSAR Toolbox
11
Known DNA (covalent) binding mechanisms
12
Known DNA (covalent) binding mechanisms
13
Structural boundaries of the category
14
Structural boundaries of the category
15
Methods: DNA binding profile by OASIS DNA binding profile by OECD
QSAR Toolbox profiles for DNA binding DNA binding profile by OASIS DNA binding profile by OECD TIMES Metabolic simulator for rat liver S9
16
OASIS Metabolic Simulator
Prioritized list of non-enzymatic (abiotic) and enzymatic molecular transformations; Molecular transformations are characterized by: Source and product fragments; Inhibiting “masks” preventing the application of metabolic reactions if necessary; Substructure-matching software engine applies the simulated biochemical Reproduces the documented metabolic pathways and toxicity endpoint resulting from metabolic activation of chemicals 26
17
Illustration the OASIS Metabolic Simulators
(extract from the Rat in vivo metabolism simulator)
18
Simulator of metabolism
Substrate Principle transformations Metabolites Simulator of metabolism Aliphatic C-oxidation Epoxide Hydration Epoxidation Aliphatic C-oxidation Aliphatic C-oxidation O-Glucuronidation
19
Simulator of metabolism
Substrate Principle transformations Metabolites Aliphatic C-oxidation P= 0.97 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
20
Substrate Principle transformations Metabolites - Isopropenylbenzene
Aliphatic C-oxidation P= 0.97 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
21
Match? - No! Substrate Principle transformations Metabolites
- Isopropenylbenzene Aliphatic C-oxidation P= 0.97 Match? - No! Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
22
Substrate Principle transformations Metabolites - Isopropenylbenzene
Aliphatic C-oxidation P= 0.97 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
23
Match? - No! Substrate Principle transformations Metabolites
- Isopropenylbenzene Aliphatic C-oxidation P= 0.97 Epoxide Hydration P= 0.96 Match? - No! Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
24
Match? - Yes! Substrate Principle transformations Metabolites
- Isopropenylbenzene Generated map 1.1 Epoxidation Aliphatic C-oxidation P= 0.97 Epoxide Hydration P= 0.96 Epoxidation RESULT Match? - Yes! P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
25
Match? - Yes! Substrate Principle transformations Metabolites
- Isopropenylbenzene Generated map C-oxidation 1.2 Aliphatic C-oxidation P= 0.97 Epoxidation 1.1 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation RESULT Match? - Yes! P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
26
Match? - No! Substrate Principle transformations Metabolites
- Isopropenylbenzene Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation Match? - No! P= 0.93 O-Glucuronidation P= 0.90
27
Match? - No! Substrate Principle transformations Metabolites
- Isopropenylbenzene Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90 Match? - No!
28
Match? - No! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation Match? - No! P= 0.97 Epoxidation C-oxidation 1.1 1.2 Epoxide Hydration P= 0.96 Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
29
Match? - Yes! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 Epoxide Hydration P= 0.96 RESULT Match? - Yes! 2.1 Hydration Epoxidation P= 0.95 Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
30
Match? - Yes! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation RESULT Match? - Yes! P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 Hydration 2.1 Epoxidation P= 0.95 3.1 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
31
Match? - Yes! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation RESULT Match? - Yes! P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 C-oxidation 2.2 Hydration 2.1 Epoxidation P= 0.95 3.1 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
32
Match? - No! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation Match? - No! P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 C-oxidation 2.2 Hydration 2.1 Epoxidation P= 0.95 3.1 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
33
Match? - No! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration Match? - No! P= 0.96 C-oxidation 2.2 Hydration 2.1 Epoxidation P= 0.95 3.1 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
34
(Conjugated aldehyde group prevents epoxidation)
Substrate Principle transformations Metabolites - Metabolite 2.2. Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 C-oxidation 2.2 Hydration Epoxidation 2.1 (Conjugated aldehyde group prevents epoxidation) Match? - Yes! 3.1 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
35
Match? - No! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 C-oxidation 2.2 Hydration Epoxidation 2.1 P= 0.95 3.1 C-oxidation Aliphatic C-oxidation Match? - No! P= 0.94 Aliphatic C-oxidation P= 0.93 O-Glucuronidation P= 0.90
36
Match? - Yes! Substrate Principle transformations Metabolites
Generated map Aliphatic C-oxidation P= 0.97 Epoxidation C-oxidation 1.1 1.2 1.1 1.2 Epoxide Hydration P= 0.96 C-oxidation 2.2 Hydration Epoxidation 2.1 P= 0.95 3.1 C-oxidation 3.2 C-oxidation Aliphatic C-oxidation P= 0.94 Aliphatic C-oxidation RESULT Match? - Yes! P= 0.93 O-Glucuronidation P= 0.90
37
Bridging the “Parent Gap”
Metabolic Simulators Bridging the “Parent Gap” Library of Biotransformations & Abiotic Reactions Parent Chemicals Algorithm for optimizing Transformation Probabilities (Rate constants) Metabolic Simulators Documented Partial Maps Metabolic Maps and Reactivity Profiles Virtual metabolism uses a heuristic substructure search engine applied to a hierarchy of possible molecular transformations
38
Simulated Metabolic Activation of 2-Acetylaminofluorene
(AMES mutagenicity in Rat liverS9) Documented
39
The OASIS Simulators of Mammalian
Metabolism Liver S9 metabolism Different level of biological organisms (US EPA) Rat liver subcellular (microsomal) Rat liver cellular (in vitro) Organism (in vivo) In vivo metabolism – rat liver (in vivo MNT) In vivo detoxification logic In vivo bioactivation Skin metabolism
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.