Download presentation
Presentation is loading. Please wait.
Published byDinah Bradley Modified over 5 years ago
1
2) Find one positive and one negative coterminal angle to 𝜋 3 .
Warm-up: 1) r = 9, θ = 230º 2) Find one positive and one negative coterminal angle to 𝜋 3 . Find arc length S. HW: Pg (2 – 30 even, 33, 37, 39, 41, 45, 47, 51) Timed Five Minute Quiz on Unit Circle tomorrow!
2
a. I b.III a.III b. IV a. IV b. II a. IV b. III a. III b. II
HW Answers: p (5 – 10 , , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73) a. I b.III a.III b. IV a. IV b. II a. IV b. III a. III b. II 15) a. 25/12, -23/12 b. 8/3, -4/3 16) a. 19/6, -5/6 b. /6, -23/6 17) a. 7/4, - /4 b. 28/15, -32/15 18) a.26/9, -10/9 b. 98/45, -82/45 25) a. II b. IV 27) a. III b. I 33) a.405° , -315° b.324°, -396° 34) a.480°, -240 ° b. 330°, -30° 35) a. 660°, -60° b. 20°, -340° 36) a. 300°, -60° b. -130°, 590° 43) a. 270° b.210° 45) a. 420° b. -66°
3
HW Answers: p367-368 (5 – 10 , 15 -18 , 25, 27, 33 – 36 , 43 – 61 odd, 71, 73)
47) 2.007 49) 51) 9.285 53) 55) ° 57) 337.5° 59) -756° 61) ° 71) 6/5 rad 73) 32/7 rad
4
4.2 Trigonometric Functions: The Unit circle
Objective: Evaluate trigonometric functions Use period to evaluate trigonometric functions Evaluate trigonometric functions with a calculator.
5
The Unit Circle with Radian Measures
6
Do you remember 30º, 60º, 90º special right triangles?
long leg hypotenuse short leg Hypotenuse = double the short leg short leg = half the hypotenuse
7
The Unit Circle with Radian Measures
1 2 , 1 30o 60o 1/2 Hypotenuse = double the short leg short leg = half the hypotenuse long leg = short leg times
8
The Unit Circle with Radian Measures
− 1 2 , 1 2 , − , 1 2 3 2 , 1 2 30o 60o 1 𝟏 𝟐 𝟑 𝟐 − , − 1 2 3 2 , − 1 2 − 1 2 ,− 1 2 ,−
9
Do you remember 45º, 45º, 90º isosceles right triangles?
10
The Unit Circle with Radian Measures
leg = hypotenuse times 45o 1 2 2 ,
11
The Unit Circle: Radian Measures and Coordinates
Trigonometric Functions: Let t be a real number and let (x, y) be the point on the unit circle corresponding to t sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 (cos t, sin t)
12
Angles and the Unit Circle
Find the exact values of cos (–150°) and sin (–150°). sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 sin −150° =− 1 2 cos −150° =−
13
Find the six trig functions for 2𝜋 3
sin t = y csc t = 1 𝑦 cos t = x sec t = 1 𝑥 tan t = 𝑦 𝑥 cot t = 𝑥 𝑦 sin 2𝜋 3 = cos 2𝜋 3 =− 1 2 tan 2𝜋 3 = csc 2𝜋 3 = sec 2𝜋 3 = cot 2𝜋 3 =
14
Example: Evaluate the six trigonometric functions of − 𝜋 4
15
Even and Odd Trig Functions:
Even: cos(-t) = cost sec(-t) = sect Odd: sin(-t) = -sint tan(-t) = -tant csc(-t) = -csct cot(-t) = -cott
16
Using the Period to Evaluate Sine and Cosine:
17
Evaluating Trig Functions with a Calculator:
1) csc 𝜋 8 = 1 𝑠𝑖𝑛 𝜋 Mode: Radian 1 sin ( ENTER Display: … 2) Sin 76.4 Mode: Degree Sin ENTER Display: …
18
Display: 0.0709… Evaluating Trig Functions with a Calculator:
2) cot 1.5 Mode: Radian 1 tan ( ENTER Display: …
19
Evaluate the six trigonometric functions of − 9𝜋 4
Sneedlegrit: Evaluate the six trigonometric functions of − 9𝜋 4 HW: Pg (2 – 30 even, 33, 37, 39, 41, 45, 47, 51) Timed Five Minute Quiz on Unit Circle tomorrow!
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.