Presentation is loading. Please wait.

Presentation is loading. Please wait.

ECE 8823A GPU Architectures Module 3: CUDA Execution Model -I

Similar presentations


Presentation on theme: "ECE 8823A GPU Architectures Module 3: CUDA Execution Model -I"— Presentation transcript:

1 ECE 8823A GPU Architectures Module 3: CUDA Execution Model -I
© David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

2 Objective A more detailed look at kernel execution
Data to thread assignment To understand the organization and scheduling of threads Resource assignment at the block level Scheduling at the warp level Basics of SIMT execution © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

3 Reading Assignment Kirk and Hwu, “Programming Massively Parallel Processors: A Hands on Approach,”, Chapter 4 Kirk and Hwu, “Programming Massively Parallel Processors: A Hands on Approach,”, Chapter 6.3 Reference: CUDA Programming Guide

4 A Multi-Dimensional Grid Example
host device Grid 1 Block (0, 0) Block (0, 1) Kernel 1 Block (1, 0) Block (1, 1) Grid 2 Block (1,1) Kernel 2 (1,0,0) (1,0,1) (1,0,2) (1,0,3) Thread (0,0,0) Thread (0,0,1) Thread (0,0,2) Thread (0,0,3) Thread (0,0,0) Thread (0,1,3) Thread (0,1,0) Thread (0,1,1) Thread (0,1,2) © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

5 Built-In Variables 1D-3D Grid of thread blocks Built-in: gridDim
gridDim.x, gridDim.y, gridDim.z Built-in: blockDim blockDim.x, blockDim.y, blockDim.z Example dim3 dimGrid (32,2,2) - 3D grid of thread blocks dim3 dimGrid (2,2,1) - 2D grid of thread blocks dim3 dimGrid (32,1,1) - 1D grid of thread blocks dim3 dimGrid ((n/256.0),1,1) - 1D grid of thread blocks my_kernel<<<dimGrid, dimBlock>>>(..) © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

6 Built-In Variables (2) 1D-3D grid of threads in a thread block
Built-in: blockIdx blockIDx.x, blockIDx.y, blockIDx.z Built-in: threadIDx threadIDx.x, threadIDx.y, threadIDX.z All blocks have the same thread configuration Example dim3 dimBlock (4,2,2) - 3D grid of thread blocks dim3 dimBlock (2,2,1) - 2D grid of thread blocks dim3 dimBlock (32,1,1) - 1D grid of thread blocks my_kernel<<<dimGrid, dimBlock>>>(..) © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

7 Built-In Variables (3) 1D-3D grid of threads in a thread block
Built-in: blockIdx blockIDx.x, blockIDx.y, blockIDx.z Built-in: threadIDx threadIDx.x, threadIDx.y, threadIDX.z Initialized by the runtime through a kernel call Range fixed by the compute capability and target devices You can query the device (later) © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

8 2D Examples

9 Processing a Picture with a 2D Grid
16×16 blocks Show the example calling code from the text and identify the thread configuration Explain sizing of grid blocks and grid dimensions 72x62 pixels © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

10 Row-Major Layout in C/C++
Row*Width+Col = 2*4+1 = 9 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

11 Source Code of the Picture Kernel
__global__ void PictureKernel(float* d_Pin, float* d_Pout, int n,int m) { // Calculate the row # of the d_Pin and d_Pout element to process int Row = blockIdx.y*blockDim.y + threadIdx.y; // Calculate the column # of the d_Pin and d_Pout element to process int Col = blockIdx.x*blockDim.x + threadIdx.x; // each thread computes one element of d_Pout if in range if ((Row < m) && (Col < n)) { d_Pout[Row*n+Col] = 2*d_Pin[Row*n+Col]; } © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

12 STirag Approach Summary Storage layout of data Assign unique ID
Map IDs to Data (access) Figure 4.5 Covering a 76×62 picture with 16×blocks. © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

13 A Simple Running Example Matrix Multiplication
A simple illustration of the basic features of memory and thread management in CUDA programs Thread index usage Memory layout Register usage Assume square matrix for simplicity Leave shared memory usage until later © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

14 Square Matrix-Matrix Multiplication
P = M * N of size WIDTH x WIDTH Each thread calculates one element of P Each row of M is loaded WIDTH times from global memory Each column of N is loaded WIDTH times from global memory N WIDTH M P WIDTH WIDTH WIDTH © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

15 Row-Major Layout in C/C++
Row*Width+Col = 2*4+1 = 9 M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

16 Matrix Multiplication A Simple Host Version in C
// Matrix multiplication on the (CPU) host in double precision void MatrixMulOnHost(float* M, float* N, float* P, int Width)‏ { for (int i = 0; i < Width; ++i) for (int j = 0; j < Width; ++j) {map double sum = 0; for (int k = 0; k < Width; ++k) double a = M[i * Width + k]; double b = N[k * Width + j]; sum += a * b; } P[i * Width + j] = sum; N k j WIDTH M P Point out that I and j will become global thread indices. i WIDTH k © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign WIDTH WIDTH

17 Kernel Version: Functional Description
col for (int k = 0; k < Width; ++k) Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col]; N k j Which thread is at coordinate (row,col)? Threads self allocate WIDTH M P Point out that I and j will become global thread indices. row i blockDim.y WIDTH blockDim.x k © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign WIDTH WIDTH

18 Kernel Function - A Small Example
Have each 2D thread block to compute a (TILE_WIDTH)2 sub-matrix (tile) of the result matrix Each has (TILE_WIDTH)2 threads Generate a 2D Grid of (WIDTH/TILE_WIDTH)2 blocks Block(0,0) Block(0,1) P0,0 P0,1 P0,2 P0,3 WIDTH = 4; TILE_WIDTH = 2 Each block has 2*2 = 4 threads P1,0 P1,1 P1,2 P1,3 P2,0 P2,1 P2,2 P2,3 WIDTH/TILE_WIDTH = 2 Use 2* 2 = 4 blocks P3,0 P3,1 P2,3 P3,3 Block(1,0) Block(1,1) © David Kirk/NVIDIA and Wen-mei W. Hwu, Urbana, July 9-13

19 A Slightly Bigger Example
WIDTH = 8; TILE_WIDTH = 2 Each block has 2*2 = 4 threads P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7 P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7 P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 WIDTH/TILE_WIDTH = 4 Use 4* 4 = 16 blocks P5,0 P5,1 P5,2 P5,3 P5,4 P5,5 P5,6 P5,7 P6,0 P6,1 P6,2 P6,3 P6,4 P6,5 P6,6 P6,7 P7,0 P7,1 P7,2 P7,3 P7,4 P7,5 P7,6 P7,7 © David Kirk/NVIDIA and Wen-mei W. Hwu, Urbana, July 9-13

20 A Slightly Bigger Example (cont.)
WIDTH = 8; TILE_WIDTH = 4 Each block has 4*4 =16 threads P2,0 P2,1 P2,2 P2,3 P2,4 P2,5 P2,6 P2,7 P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7 P4,0 P4,1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 WIDTH/TILE_WIDTH = 2 Use 2* 2 = 4 blocks P5,0 P5,1 P5,2 P5,3 P5,4 P5,5 P5,6 P5,7 P6,0 P6,1 P6,2 P6,3 P6,4 P6,5 P6,6 P6,7 P7,0 P7,1 P7,2 P7,3 P7,4 P7,5 P7,6 P7,7 © David Kirk/NVIDIA and Wen-mei W. Hwu, Urbana, July 9-13

21 Kernel Invocation (Host-side Code)
// Setup the execution configuration // TILE_WIDTH is a #define constant dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH, 1); dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1); // Launch the device computation threads! MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width); © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

22 Kernel Function // Matrix multiplication kernel – per thread code {
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width)‏ { // Pvalue is used to store the element of the matrix // that is computed by the thread float Pvalue = 0; © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

23 Work for Block (0,0) in a TILE_WIDTH = 2 Configuration
blockDim.x blockDim.y Col = 0 Col = 1 Col = 0 * 2 + threadIdx.x Row = 0 * 2 + threadIdx.y N0,0 N0,1 N0,2 N0,3 N1,0 N1,1 N1,2 N1,3 blockIdx.x blockIdx.y N2,0 N2,1 N2,2 N2,3 N3,0 N3,1 N3,2 N3,3 Row = 0 M0,0 M0,1 M0,2 M0,3 P0,0 P0,1 P0,2 P0,3 Row = 1 M1,0 M1,1 M1,2 M1,3 P1,0 P1,1 P1,2 P1,3 M2,0 M2,1 M2,2 M2,3 P2,0 P2,1 P2,2 P2,3 M3,0 M3,1 M3,2 M3,3 P3,0 P3,1 P3,2 P3,3 © David Kirk/NVIDIA and Wen-mei W. Hwu, Urbana, July 9-13

24 Work for Block (0,1) blockDim.x blockDim.y Col = 2 Col = 3
Col = 1 * 2 + threadIdx.x Row = 0 * 2 + threadIdx.y N0,0 N0,1 N0,2 N0,3 N1,0 N1,1 N1,2 N1,3 N2,0 N2,1 N2,2 N2,3 blockIdx.x blockIdx.y N3,0 N3,1 N2,3 N3,3 M0,0 M0,1 M0,2 M0,3 P0,0 P0,1 P0,2 P0,3 Row = 0 M1,0 M1,1 M1,2 M1,3 P0,1 P1,1 P1,2 P1,3 Row = 1 M2,0 M2,1 M2,2 M2,3 P2,0 P2,1 P2,2 P2,3 M3,0 M3,1 M3,2 M3,3 P3,0 P3,1 P3,2 P3,3 © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

25 A Simple Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) { // Calculate the row index of the d_P element and d_M int Row = blockIdx.y*blockDim.y+threadIdx.y; // Calculate the column idenx of d_P and d_N int Col = blockIdx.x*blockDim.x+threadIdx.x; if ((Row < Width) && (Col < Width)) { float Pvalue = 0; // each thread computes one element of the block sub-matrix for (int k = 0; k < Width; ++k) Pvalue += d_M[Row*Width+k] * d_N[k*Width+Col]; d_P[Row*Width+Col] = Pvalue; } Memory access patterns across threads in a block (inner loop) © David Kirk/NVIDIA and Wen-mei Hwu, ECE408/CS483/ECE498al, University of Illinois, Urbana-Champaign

26 Questions? © David Kirk/NVIDIA and Wen-mei W. Hwu, ECE408/CS483, University of Illinois, Urbana-Champaign


Download ppt "ECE 8823A GPU Architectures Module 3: CUDA Execution Model -I"

Similar presentations


Ads by Google