Presentation is loading. Please wait.

Presentation is loading. Please wait.

Trig Equations.

Similar presentations


Presentation on theme: "Trig Equations."β€” Presentation transcript:

1 Trig Equations

2 f(x)= cos 2π‘₯, 0Β°<π‘₯≀360Β° g(x)=tan π‘₯βˆ’60 , βˆ’360Β°<π‘₯≀0Β°
Trigonometry KUS objectives BAT rearrange and solve trig equations Starter: sketch these graphs f(x)= cos 2π‘₯, Β°<π‘₯≀360Β° g(x)=tan π‘₯βˆ’60 , βˆ’360Β°<π‘₯≀0Β° h x =βˆ’sin π‘₯+45 , βˆ’180Β°<π‘₯≀180Β° Check using Desmos / geogebra

3 Solve sin πœƒ =0.5 in the interval 0≀ πœƒ ≀360Β°
WB21 Solve sin πœƒ =0.5 in the interval 0≀ πœƒ ≀360Β° One thing you should pay careful attention to is the range the answers can be within, Use Sin-1 This will give you one answer 0.5 y = SinΞΈ 90 180 270 360 30 150 The infinite set of solutions for βˆ’βˆžβ‰€ πœƒ β‰€βˆžΒ° , would be πœƒ=30Β±360𝑛 πœƒ=150Β±360𝑛

4 Solve 5sin πœƒ =βˆ’2 in the interval 0≀ πœƒ ≀360Β°
WB22 Solve 5sin πœƒ =βˆ’2 in the interval 0≀ πœƒ ≀360Β° Divide by 5 Use Sin-1 Not within the range. You can add 360Β° to obtain an equivalent value 203.6 336.4 90 180 270 360 y = SinΞΈ -0.4 The infinite set of solutions for βˆ’βˆžβ‰€ πœƒ β‰€βˆžΒ° , would be … ? πœƒ=203.6Β±360𝑛 πœƒ=336.4Β±360𝑛

5 tan πœƒ = 9 2 πœƒ=77.5 Solve 2 tan πœƒ =βˆ’9 in the interval βˆ’90°≀ πœƒ ≀90Β°
WB23 Solve 2 tan πœƒ =βˆ’9 in the interval βˆ’90°≀ πœƒ ≀90Β° 90ΒΊ 180ΒΊ 270ΒΊ 360ΒΊ -90ΒΊ -180ΒΊ -360ΒΊ 1 -1 -270ΒΊ ΞΈ tan πœƒ = 9 2 Divide by 2 Use Tan-1 πœƒ=77.5 There is only one solution if βˆ’90°≀ πœƒ ≀90Β° The infinite set of solutions for βˆ’βˆžβ‰€ πœƒ β‰€βˆžΒ° , would be … ? πœƒ=77.5Β±180𝑛

6 The infinite set of solutions
WB24 Solve cos πœƒ =0.5 in the interval βˆ’90≀ πœƒ ≀ 270ο‚° 90 y = CosΞΈ Y=0.5 270 360 180 -90 cos πœƒ = 1 2 Use Tan-1 πœƒ=…60, 300, … The infinite set of solutions for βˆ’βˆžβ‰€ πœƒ β‰€βˆžΒ° , would be … ? Now consider βˆ’90≀ πœƒ ≀ 270ο‚° πœƒ=Β±60Β±360𝑛 πœƒ=βˆ’60, π‘œπ‘Ÿ πœƒ=60

7 2sin πœƒ=1.6, 0β‰€πœƒβ‰€180 π‘‘π‘Žπ‘›πœƒ=2, 0β‰€πœƒβ‰€360 cos πœƒ = 2 5 , 0β‰€πœƒβ‰€360
Practice 1 Solve these equations, give exact answers or round to 3 s.f. 2sin πœƒ=1.6, 0β‰€πœƒβ‰€180 π‘‘π‘Žπ‘›πœƒ=2, 0β‰€πœƒβ‰€360 cos πœƒ = 2 5 , 0β‰€πœƒβ‰€360 π‘‘π‘Žπ‘›πœƒ+8=11, βˆ’180β‰€πœƒβ‰€180 cos πœƒ = 1 5 , βˆ’360β‰€πœƒβ‰€360 3 sin πœƒ =4, 0β‰€πœƒβ‰€360 3 tan πœƒ =1, 0β‰€πœƒβ‰€360 βˆ’3 sin πœƒ =8, 0β‰€πœƒβ‰€360 cos πœƒ =βˆ’ 2 5 , 0β‰€πœƒβ‰€360 3 π‘‘π‘Žπ‘›πœƒ=βˆ’6, 0β‰€πœƒβ‰€720 sin πœƒ =βˆ’ , 0β‰€πœƒβ‰€360 cos πœƒ =βˆ’ 1 2 , βˆ’360β‰€πœƒβ‰€0

8 Solve cos 2πœƒ =βˆ’1 in the interval 0≀ πœƒ ≀360Β°
WB25 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve cos 2πœƒ =βˆ’1 in the interval 0≀ πœƒ ≀360Β° 1) Work out the acceptable interval for 2ΞΈ Multiply by 2 Solve using Cos-1 2) Work out one possible answer as before. Find all values in the standard 0 – 360 range y = CosΞΈ 3) Add/Subtract 360 to these values until you have all the answers within the 2ΞΈ range 90 180 270 360 -1 180 4) These answers are for 2ΞΈ. Undo them to find values for ΞΈ itself

9 1) Work out the acceptable interval for (ΞΈ-60)
WB26 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve tan (πœƒβˆ’60) =βˆ’1 in the interval 0≀ πœƒ ≀360Β° 1) Work out the acceptable interval for (ΞΈ-60) Subtract 60 βˆ’60≀ πœƒβ‰€300 2) Work out one possible answer as before. Find all values in the standard 0 – 360 range tan (πœƒβˆ’60) =βˆ’1 Solve using tan-1 πœƒβˆ’60=βˆ’45 3) Add/Subtract 180 to these values until you have all the answers within the (20 - ΞΈ) range 90ΒΊ 180ΒΊ 270ΒΊ 360ΒΊ -90ΒΊ -180ΒΊ -360ΒΊ 1 -1 -270ΒΊ ΞΈ 4) These answers are for (20 – ΞΈ). Undo this to find values for ΞΈ itself πœƒβˆ’60=βˆ’45, , , πœƒ= 15, 195, Two answers between 0≀ πœƒ ≀360Β°

10 1) Work out the acceptable interval for (2ΞΈ – 35)
WB27 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve sin (2πœƒβˆ’35) =βˆ’1 in the intervalβˆ’180°≀ πœƒ ≀180Β° Multiply by 2. Subtract 35 1) Work out the acceptable interval for (2ΞΈ – 35) Solve using Sin-1 2) Work out one possible answer as before. Find all values in the standard 0 – 360 range y = SinΞΈ 3) Add/Subtract 360 to these values until you have all the answers within the (2ΞΈ - 35) range 90 180 270 360 -1 270 Adding/Subtracting 360 to the value we worked out (staying within the range) 4) These answers are for (2ΞΈ – 35). Undo this to find values for ΞΈ itself Add 35, Divide by 2

11 1) Work out the acceptable interval for (20 – ΞΈ)
WB28 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve tan (20βˆ’πœƒ) =3 in the intervalβˆ’180°≀ πœƒ ≀180Β° 1) Work out the acceptable interval for (20 – ΞΈ) Multiply by -1 Solve using tan-1 Add 20 2) Work out one possible answer as before. Find all values in the standard 0 – 360 range β€˜Turn round’ 71.6 251.6 3) Add/Subtract 180 to these values until you have all the answers within the (20 - ΞΈ) range 3 y = TanΞΈ 90 180 270 360 Adding/Subtracting 180 to the values we worked out (staying within the range) 4) These answers are for (20 – ΞΈ). Undo this to find values for ΞΈ itself Subtract 20 Multiply by -1

12 Practice 2 Solve these equations
sin 2πœƒ= 1 3 , 0β‰€πœƒβ‰€180 sin 2πœƒβˆ’30 = 1 3 , 0β‰€πœƒβ‰€180 cos (πœƒ+180) = , 0β‰€πœƒβ‰€360 cos (3πœƒβˆ’10) = , 0β‰€πœƒβ‰€360 tan π‘₯ 2 = β‰€πœƒβ‰€360 tan πœƒ+20 = , 0β‰€πœƒβ‰€360 sin (πœƒβˆ’40)= β‰€πœƒβ‰€360 sin 5πœƒβˆ’100 = βˆ’90β‰€πœƒβ‰€180 cos (4πœƒ) =0.174 , 0β‰€πœƒβ‰€90 cos π‘₯βˆ’10 =0.174 , βˆ’360β‰€πœƒβ‰€0 tan πœƒβˆ’45 =2βˆ’ β‰€πœƒβ‰€360 tan 2π‘₯βˆ’15 =0.364 , βˆ’90β‰€πœƒβ‰€90

13 One thing to improve is –
KUS objectives BAT rearrange and solve trig equations self-assess One thing learned is – One thing to improve is –

14 END


Download ppt "Trig Equations."

Similar presentations


Ads by Google