Download presentation
Presentation is loading. Please wait.
1
Trig Equations
2
f(x)= cos 2π₯, 0Β°<π₯β€360Β° g(x)=tan π₯β60 , β360Β°<π₯β€0Β°
Trigonometry KUS objectives BAT rearrange and solve trig equations Starter: sketch these graphs f(x)= cos 2π₯, Β°<π₯β€360Β° g(x)=tan π₯β60 , β360Β°<π₯β€0Β° h x =βsin π₯+45 , β180Β°<π₯β€180Β° Check using Desmos / geogebra
3
Solve sin π =0.5 in the interval 0β€ π β€360Β°
WB21 Solve sin π =0.5 in the interval 0β€ π β€360Β° One thing you should pay careful attention to is the range the answers can be within, Use Sin-1 This will give you one answer 0.5 y = SinΞΈ 90 180 270 360 30 150 The infinite set of solutions for βββ€ π β€βΒ° , would be π=30Β±360π π=150Β±360π
4
Solve 5sin π =β2 in the interval 0β€ π β€360Β°
WB22 Solve 5sin π =β2 in the interval 0β€ π β€360Β° Divide by 5 Use Sin-1 Not within the range. You can add 360Β° to obtain an equivalent value 203.6 336.4 90 180 270 360 y = SinΞΈ -0.4 The infinite set of solutions for βββ€ π β€βΒ° , would be β¦ ? π=203.6Β±360π π=336.4Β±360π
5
tan π = 9 2 π=77.5 Solve 2 tan π =β9 in the interval β90Β°β€ π β€90Β°
WB23 Solve 2 tan π =β9 in the interval β90Β°β€ π β€90Β° 90ΒΊ 180ΒΊ 270ΒΊ 360ΒΊ -90ΒΊ -180ΒΊ -360ΒΊ 1 -1 -270ΒΊ ΞΈ tan π = 9 2 Divide by 2 Use Tan-1 π=77.5 There is only one solution if β90Β°β€ π β€90Β° The infinite set of solutions for βββ€ π β€βΒ° , would be β¦ ? π=77.5Β±180π
6
The infinite set of solutions
WB24 Solve cos π =0.5 in the interval β90ο°β€ π β€ 270ο° 90 y = CosΞΈ Y=0.5 270 360 180 -90 cos π = 1 2 Use Tan-1 π=β¦60, 300, β¦ The infinite set of solutions for βββ€ π β€βΒ° , would be β¦ ? Now consider β90ο°β€ π β€ 270ο° π=Β±60Β±360π π=β60, ππ π=60
7
2sin π=1.6, 0β€πβ€180 π‘πππ=2, 0β€πβ€360 cos π = 2 5 , 0β€πβ€360
Practice 1 Solve these equations, give exact answers or round to 3 s.f. 2sin π=1.6, 0β€πβ€180 π‘πππ=2, 0β€πβ€360 cos π = 2 5 , 0β€πβ€360 π‘πππ+8=11, β180β€πβ€180 cos π = 1 5 , β360β€πβ€360 3 sin π =4, 0β€πβ€360 3 tan π =1, 0β€πβ€360 β3 sin π =8, 0β€πβ€360 cos π =β 2 5 , 0β€πβ€360 3 π‘πππ=β6, 0β€πβ€720 sin π =β , 0β€πβ€360 cos π =β 1 2 , β360β€πβ€0
8
Solve cos 2π =β1 in the interval 0β€ π β€360Β°
WB25 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve cos 2π =β1 in the interval 0β€ π β€360Β° 1) Work out the acceptable interval for 2ΞΈ Multiply by 2 Solve using Cos-1 2) Work out one possible answer as before. Find all values in the standard 0 β 360 range y = CosΞΈ 3) Add/Subtract 360 to these values until you have all the answers within the 2ΞΈ range 90 180 270 360 -1 180 4) These answers are for 2ΞΈ. Undo them to find values for ΞΈ itself
9
1) Work out the acceptable interval for (ΞΈ-60)
WB26 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve tan (πβ60) =β1 in the interval 0β€ π β€360Β° 1) Work out the acceptable interval for (ΞΈ-60) Subtract 60 β60β€ πβ€300 2) Work out one possible answer as before. Find all values in the standard 0 β 360 range tan (πβ60) =β1 Solve using tan-1 πβ60=β45 3) Add/Subtract 180 to these values until you have all the answers within the (20 - ΞΈ) range 90ΒΊ 180ΒΊ 270ΒΊ 360ΒΊ -90ΒΊ -180ΒΊ -360ΒΊ 1 -1 -270ΒΊ ΞΈ 4) These answers are for (20 β ΞΈ). Undo this to find values for ΞΈ itself πβ60=β45, , , π= 15, 195, Two answers between 0β€ π β€360Β°
10
1) Work out the acceptable interval for (2ΞΈ β 35)
WB27 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve sin (2πβ35) =β1 in the intervalβ180Β°β€ π β€180Β° Multiply by 2. Subtract 35 1) Work out the acceptable interval for (2ΞΈ β 35) Solve using Sin-1 2) Work out one possible answer as before. Find all values in the standard 0 β 360 range y = SinΞΈ 3) Add/Subtract 360 to these values until you have all the answers within the (2ΞΈ - 35) range 90 180 270 360 -1 270 Adding/Subtracting 360 to the value we worked out (staying within the range) 4) These answers are for (2ΞΈ β 35). Undo this to find values for ΞΈ itself Add 35, Divide by 2
11
1) Work out the acceptable interval for (20 β ΞΈ)
WB28 to solve equations in the form Sin/Cos/Tan(aΞΈ + b) = k Solve tan (20βπ) =3 in the intervalβ180Β°β€ π β€180Β° 1) Work out the acceptable interval for (20 β ΞΈ) Multiply by -1 Solve using tan-1 Add 20 2) Work out one possible answer as before. Find all values in the standard 0 β 360 range βTurn roundβ 71.6 251.6 3) Add/Subtract 180 to these values until you have all the answers within the (20 - ΞΈ) range 3 y = TanΞΈ 90 180 270 360 Adding/Subtracting 180 to the values we worked out (staying within the range) 4) These answers are for (20 β ΞΈ). Undo this to find values for ΞΈ itself Subtract 20 Multiply by -1
12
Practice 2 Solve these equations
sin 2π= 1 3 , 0β€πβ€180 sin 2πβ30 = 1 3 , 0β€πβ€180 cos (π+180) = , 0β€πβ€360 cos (3πβ10) = , 0β€πβ€360 tan π₯ 2 = β€πβ€360 tan π+20 = , 0β€πβ€360 sin (πβ40)= β€πβ€360 sin 5πβ100 = β90β€πβ€180 cos (4π) =0.174 , 0β€πβ€90 cos π₯β10 =0.174 , β360β€πβ€0 tan πβ45 =2β β€πβ€360 tan 2π₯β15 =0.364 , β90β€πβ€90
13
One thing to improve is β
KUS objectives BAT rearrange and solve trig equations self-assess One thing learned is β One thing to improve is β
14
END
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.