Presentation is loading. Please wait.

Presentation is loading. Please wait.

White-Box Testing Techniques II

Similar presentations


Presentation on theme: "White-Box Testing Techniques II"— Presentation transcript:

1 White-Box Testing Techniques II
Dataflow Testing

2 White-Box Testing Topics
Logic coverage Dataflow coverage Path conditions and symbolic execution (lecture III) Other white-box testing strategies e.g. fault-based testing

3 Dataflow Coverage Basic idea:
Program paths along which variables are defined and then used should be covered A family of path selection criteria has been defined, each providing a different degree of coverage CASE tool support is very desirable

4 Variable Definition A program variable is DEFINED when it appears:
on the left hand side of an assignment statement eg y = 17 in an input statement eg read(y) as an call-by-reference parameter in a subroutine call eg update(x, &y);

5 Variable Use A program variable is USED when it appears:
on the right hand side of an assignment statement eg y = x+17 as an call-by-value parameter in a subroutine or function call eg y = sqrt(x) in the predicate of a branch statement eg if ( x > 0 ) { … }

6 Variable Use: p-use and c-use
Use in the predicate of a branch statement is a predicate-use or “p-use” Any other use is a computation-use or “c-use” For example, in the program fragment: if ( x > 0 ) { print(y); } there is a p-use of x and a c-use of y

7 Variable Use A variable can also be used and then re-defined in a single statement when it appears: on both sides of an assignment statement eg y = y + x as an call-by-reference parameter in a subroutine call eg increment( &y )

8 More Dataflow Terms and Definitions
A path is definition clear (“def-clear”) with respect to a variable v if it has no variable re-definition of v on the path A complete path is a path whose initial node is a start node and whose final node is an exit node

9 Dataflow Terms and Definitions
A definition-use pair (“du-pair”) with respect to a variable v is a double (d,u) such that d is a node in the program’s flow graph at which v is defined, u is a node or edge at which v is used and there is a def-clear path with respect to v from d to u Note that the definition of a du-pair does not require the existence of a feasible def-clear path from d to u

10 Example 1 1 2 3 4 5 1. input(A,B) if (B>1) { 2. A = A+7 }
3. if (A>10) { B = A+B 5. output(A,B) input(A,B) 1 B>1 B1 2 A = A+7 3 A>10 A10 4 B = A+B 5 output(A,B)

11 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

12 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

13 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

14 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

15 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

16 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

17 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

18 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

19 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

20 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

21 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

22 Identifying DU-Pairs – Variable A
path(s) (1,2) <1,2> (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4> (2,5) <2,3,4,5> <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

23 Identifying DU-Pairs – Variable B
input(A,B) du-pair path(s) (1,4) <1,2,3,4> <1,3,4> (1,5) <1,2,3,5> <1,3,5> (1,<1,2>) <1,2> (1,<1,3>) <1,3> (4,5) <4,5> 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

24 Dataflow Test Coverage Criteria
All-Defs for every program variable v, at least one def-clear path from every definition of v to at least one c-use or one p-use of v must be covered

25 Dataflow Test Coverage Criteria
Consider a test case executing path: 1. <1,2,3,4,5> Identify all def-clear paths covered (ie subsumed) by this path for each variable Are all definitions for each variable associated with at least one of the subsumed def-clear paths?

26 Def-Clear Paths subsumed by <1,2,3,4,5> for Variable A
du-pair path(s) (1,2) <1,2>  (1,4) <1,3,4> (1,5) <1,3,4,5> <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

27 Def-Clear Paths Subsumed by <1,2,3,4,5> for Variable B
input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4> (1,5) <1,2,3,5> <1,3,5> (4,5) <4,5>  (1,<1,2>) <1,2>  (1,<1,3>) <1,3> 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

28 Dataflow Test Coverage Criteria
Since <1,2,3,4,5> covers at least one def-clear path from every definition of A or B to at least one c-use or p-use of A or B, All-Defs coverage is achieved

29 Dataflow Test Coverage Criteria
All-Uses: for every program variable v, at least one def-clear path from every definition of v to every c-use and every p-use of v must be covered Consider additional test cases executing paths: 2. <1,3,4,5> 3. <1,2,3,5> Do all three test cases provide All-Uses coverage?

30 Def-Clear Paths Subsumed by <1,3,4,5> for Variable A
du-pair path(s) (1,2) <1,2>  (1,4) <1,3,4>  (1,5) <1,3,4,5>  <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5> (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

31 Def-Clear Paths Subsumed by <1,3,4,5> for Variable B
input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4>  (1,5) <1,2,3,5> <1,3,5> (4,5) <4,5>  (1,<1,2>) <1,2>  (1,<1,3>) <1,3>  1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

32 Def-Clear Paths Subsumed by <1,2,3,5> for Variable A
du-pair path(s) (1,2) <1,2>   (1,4) <1,3,4>  (1,5) <1,3,4,5>  <1,3,5> (1,<3,4>) (1,<3,5>) (2,4) <2,3,4>  (2,5) <2,3,4,5>  <2,3,5>  (2,<3,4>) (2,<3,5>) input(A,B) 1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

33 Def-Clear Paths Subsumed by <1,2,3,5> for Variable B
input(A,B) du-pair path(s) (1,4) <1,2,3,4>  <1,3,4>  (1,5) <1,2,3,5>  <1,3,5> (4,5) <4,5>  (1,<1,2>) <1,2>   (1,<1,3>) <1,3>  1 B>1 B1 2 A := A+7 3 A>10 A10 4 B := A+B 5 output(A,B)

34 Dataflow Test Coverage Criteria
None of the three test cases covers the du-pair (1,<3,5>) for variable A, All-Uses Coverage is not achieved

35 Example 2 1. input(X,Y) 2. while (Y>0) { 3. if (X>0) 4. Y := Y-X
else input(X) 6. } 7. output(X,Y) 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

36 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

37 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

38 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

39 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

40 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

41 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

42 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

43 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

44 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

45 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

46 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

47 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

48 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y = Y-X 6 Y0 Y>0 7 output(X,Y)

49 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

50 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

51 Identifying DU-Pairs – Variable X
path(s) (1,4) <1,2,3,4> <1,2,3,4,(6,3,4)*> (1,7) <1,2,7> <1,2,3,4,6,7> <1,2,3,4,6,(3,4,6)*,7> (1,<3,4>) (1,<3,5>) <1,2,3,5> (5,4) <5,6,3,4> <5,6,3,4,(6,3,4)*> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

52 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

53 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

54 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

55 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

56 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

57 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

58 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

59 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

60 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

61 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

62 Identifying DU-Pairs – Variable X
path(s) (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*7> (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible 1 input(X,Y)) 2 Y>0 Y0 3 X0 X>0 input(X) 5 4 Y := Y-X 6 Y0 Y>0 7 output(X,Y)

63 More Dataflow Terms and Definitions
A path (either partial or complete) is simple if all edges within the path are distinct ie different A path is loop-free if all nodes within the path are distinct ie different

64 Simple and Loop-Free Paths
<1,3,4,2> <1,2,3,2> <1,2,3,1,2> <1,2,3,2,4>

65 More Dataflow Terms and Definitions
A path <n1,n2,...,nj,nk> is a du-path with respect to a variable v if v is defined at node n1 and either: there is a c-use of v at node nk and <n1,n2,...,nj,nk> is a def-clear simple path, or there is a p-use of v at edge <nj,nk> and <n1,n2,...nj> is a def-clear loop-free path.

66 More Dataflow Terms and Definitions
A path <n1,n2,...,nj,nk> is a du-path with respect to a variable v if v is defined at node n1 and either: there is a c-use of v at node nk and <n1,n2,...,nj,nk> is a def-clear simple path, or there is a p-use of v at edge <nj,nk> and <n1,n2,...nj> is a def-clear loop-free path. NOTE!

67 Identifying du-paths X: (5,7) <5,6,7> † <5,6,3,4,6,7>
du-pair path(s) du-path? X: (5,7) <5,6,7> † <5,6,3,4,6,7> <5,6,3,4,6,(3,4,6)*,7> X: (5,<3,4>) <5,6,3,4> <5,6,3,4,(6,3,4)*> X: (5,<3,5>) <5,6,3,5> <5,6,3,4,6,3,5> † <5,6,3,4,6,(3,4,6)*,3,5> † † infeasible

68 Another Dataflow Test Coverage Criterion
All-DU-Paths: for every program variable v, every du-path from every definition of v to every c-use and every p-use of v must be covered

69 Exercise Identify all c-uses and p-uses for variable Y in Example 2
For each c-use or p-use, identify (using the “ * ” notation) all def-clear paths Identify whether or not each def-clear path is feasible, and whether or not it is a du-path

70 White-Box Coverage Subsumption Relationships
Path Compound Condition All du-paths Branch / Condition Basis Paths All-Uses Loop Condition Branch All-Defs Statement


Download ppt "White-Box Testing Techniques II"

Similar presentations


Ads by Google